Nuclear Magnetic Resonance J-tensor

Documentation on the molecular calculation of nuclear magnetic resonance (NMR) indirect nuclear spin-spin coupling constants (J-tensors) using relativistic Kramers-restricted density functional theory. In the current version of ReSpect, the methodology can be combined with the 4C Hamiltonian and applied to closed-shell molecular systems (open-shell systems are covered in pNMR).

Feature List

Wave function models

  • Kramers restricted Hartree-Fock or Kohn-Sham determinant for closed-shell singlets
  • Kramers unrestricted Hartree-Fock or Kohn-Sham determinant for open-shell doublets

Hamiltonians

  • relativistic four-component (4c) Dirac-Coulomb
  • scalable speed of light
  • switchable spin-orbit interaction

DFT non-collinear functionals

  • local (SVWN5)
  • GGA (PBE,BLYP,KT2,BP86,PP86)
  • hybrid (PBE0,B3LYP)
  • range-separated (LC-SVWN5,LC-BLYP,CAM-B3LYP)

DFT non-collinear analytical kernels

  • full expressions including the GGA part
  • adiabatic local density approximation (ALDA/XALDA)

Nuclear charge distribution models

  • point
  • finite Gaussian-type

Nuclear magnetic moment distribution models

  • point

Integral evaluation techniques

  • analytic with an in-built restricted kinetic balanced (RKB) condition for the small-component
  • analytic with an in-built restricted magnetic balanced (RMB) condition for the small-component
  • one-center approximation for the SSSS-type electron repulsion integrals

Additional features

  • DIIS convergence acceleration
  • molecular orbital analysis of the paramagnetic contribution
  • parallel execution on shared-memory parallel architectures (SMPs)

Approximations/Limitations

  • restart from a previous run is not implemented
  • four-center two-electron integrals containing RMB basis are neglected
  • contributions to the GGA-type DFT kernels from response density containing RMB basis are neglected

Related Publications

M. Repisky, S. Komorovsky, O. L. Malkina, and V. G. Malkin
Restricted magnetically balanced basis applied for relativistic calculations of indirect nuclear spin-spin coupling tensors in the matrix Dirac-Kohn-Sham framework
Chem. Phys. 356, 236–242 (2009)

M. Repisky, S. Komorovsky, M. Kadek, L. Konecny, U. Ekstrom, E. Malkin, M. Kaupp, K. Ruud, O. L. Malkina, and V. G. Malkin
ReSpect: Relativistic spectroscopy DFT program package
J. Chem. Phys. 152, 184101 (2020)

Book Chapters

M. Repisky, S. Komorovsky, R. Bast, and K. Ruud
Relativistic calculations of nuclear magnetic resonance parameters
In: Jackowski and Jaszunski (eds.) Gas Phase NMR, The Royal Society of Chemistry , 267–303 (2016)

S. Komorovsky
Relativistic Theory of EPR and (p)NMR
In: Yanez, Manuel and Boyd, Russell J. (eds.) Comprehensive Computational Chemistry, Vol. 3, Elsevier , 280–314 (2024)

Program Reference

M. Repisky, S. Komorovsky, M. Kadek, L. Konecny, U. Ekstrom, E. Malkin,
M. Kaupp, K. Ruud, O. L. Malkina, and V. G. Malkin
ReSpect: Relativistic spectroscopy DFT program package
J. Chem. Phys. 152, 184101 (2020)

Additional contributions from
R. Bast (AutoCMake), R. Di Remigio (PCMSolver), I. Malkin-Ondik (DKH2), and S. Knecht (MPI parallelization)

Latest Posts


Useful Links

Our Contacts

Hylleraas Centre
Department of Chemistry
UiT The Arctic University of Norway
Tromsø, NO-9037 Norway
Email: info@respectprogram.eu