Electric Field Gradient in Molecules

Documentation on the molecular calculation of electric field gradients (EFG) using relativistic Hartree-Fock or Kohn-Sham density functional theory. In the current version of ReSpect, the methodology can be combined with the 1C, (e)amfX2C or 4C Hamiltonian and applied to closed-shell molecular systems.

Feature List

Wave function models

  • Kramers restricted Kohn-Sham determinant for closed-shell singlets

Hamiltonians

  • non-relativistic one-component (1c)
  • relativistic four-component (4c) Dirac-Coulomb
  • relativistic two-component (2c) involving 1eX2C, amfX2C, eamfX2C or mmfX2C Hamiltonian models
  • scalable speed of light
  • scalable one-electron spin-orbit interaction

DFT functionals

  • local (SVWN5)
  • GGA (PBE,BLYP,KT2,BP86,PP86)
  • hybrid (PBE0,B3LYP)
  • range-separated (LC-SVWN5,LC-BLYP,CAM-B3LYP)

Nuclear charge distribution models

  • point
  • finite Gaussian-type

Integral evaluation techniques

  • analytic with an in-built restricted kinetic balanced (RKB) condition for the small-component
  • one-center approximation for the SSSS-type electron repulsion integrals

Additional features

  • parallel execution on shared-memory parallel architectures (SMPs)

Related Publications

M. Joosten, M. Repisky, M. Kadek, P. Pyykko, and K. Ruud
Electric-field gradients at the nuclei from all-electron four-component relativistic density-functional theory using Gaussian-type orbitals
submitted , (2024)

Program Reference

M. Repisky, S. Komorovsky, M. Kadek, L. Konecny, U. Ekstrom, E. Malkin,
M. Kaupp, K. Ruud, O. L. Malkina, and V. G. Malkin
ReSpect: Relativistic spectroscopy DFT program package
J. Chem. Phys. 152, 184101 (2020)

Additional contributions from
R. Bast (AutoCMake), R. Di Remigio (PCMSolver), I. Malkin-Ondik (DKH2), and S. Knecht (MPI parallelization)

Latest Posts


Useful Links

Our Contacts

Hylleraas Centre
Department of Chemistry
UiT The Arctic University of Norway
Tromsø, NO-9037 Norway
Email: info@respectprogram.eu