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ABSTRACT
Based on self-consistent field (SCF) atomic mean-field (amf) quantities, we present two simple yet computationally efficient and numerically
accurate matrix-algebraic approaches to correct both scalar-relativistic and spin–orbit two-electron picture-change effects (PCEs) arising
within an exact two-component (X2C) Hamiltonian framework. Both approaches, dubbed amfX2C and e(xtended)amfX2C, allow us to
uniquely tailor PCE corrections to mean-field models, viz. Hartree–Fock or Kohn–Sham DFT, in the latter case also avoiding the need for
a point-wise calculation of exchange–correlation PCE corrections. We assess the numerical performance of these PCE correction models on
spinor energies of group 18 (closed-shell) and group 16 (open-shell) diatomic molecules, achieving a consistent ≈10−5 Hartree accuracy com-
pared to reference four-component data. Additional tests include SCF calculations of molecular properties such as absolute contact density
and contact density shifts in copernicium fluoride compounds (CnFn, n = 2,4,6), as well as equation-of-motion coupled-cluster calculations of
x-ray core-ionization energies of 5d- and 6d-containing molecules, where we observe an excellent agreement with reference data. To conclude,
we are confident that our (e)amfX2C PCE correction models constitute a fundamental milestone toward a universal and reliable relativistic
two-component quantum-chemical approach, maintaining the accuracy of the parent four-component one at a fraction of its computational
cost.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0095112

I. INTRODUCTION

Advancing with rapid strides in the past decades, relativistic
quantum-chemical approaches are becoming a standard ingredient
in the computational toolbox of theoretical chemists. Notwithstand-
ing important steps forward to turn a fully relativistic quantum-
chemical approach based on the four-component Dirac formal-
ism into a handy tool,1–9 much of the success is due to the

fast-paced development and implementation of efficient quasi-
relativistic “exact” two-component approaches (X2C)10 in various
originally nonrelativistic popular quantum chemistry software pack-
ages within the past two decades. This has become possible by
making use of a matrix-algebra formalism rather than setting out
from an (order-by-order) operator-based formalism.11–19

In relativistic quantum chemistry, the common starting point
for almost all of the matrix-algebra-based two-component (2c)

J. Chem. Phys. 157, 114106 (2022); doi: 10.1063/5.0095112 157, 114106-1

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0095112
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0095112
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0095112&domain=pdf&date_stamp=2022-September-19
https://doi.org/10.1063/5.0095112
https://orcid.org/0000-0001-9818-2372
https://orcid.org/0000-0003-0776-4137
https://orcid.org/0000-0002-8743-7381
https://orcid.org/0000-0001-6407-0305
mailto:stefan@algorithmiq.fi
mailto:michal.repisky@uit.no
https://doi.org/10.1063/5.0095112


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Hamiltonian approaches, whether formulated within an elimina-
tion ansatz20–23 or in a unitary decoupling framework,24–30 has
been the four-component (4c) one-electron Dirac Hamiltonian in
the electrostatic potential of fixed nuclei.3 We will in the follow-
ing refer to the 4c Hamiltonian used to construct a 2c model as the
defining 4c Hamiltonian. In the case of the one-electron X2C Hamil-
tonian scheme (1eX2C), the two-electron (2e) interaction term is
omitted from the defining 4c Dirac Hamiltonian. Consequently,
the resulting 2c Hamiltonian is to be considered “exact” only with
respect to the inclusion of 1e terms in the defining 4c Hamilto-
nian,31 while the consideration of the 2e interaction is postponed
till after having carried out the unitary decoupling of the 1e Hamil-
tonian and the ensuing restriction to the upper (“electrons-only”)
2c spinor basis. Such an approach usually implies the use of the
untransformed 2e interaction term in the 1eX2C basis set, giving
rise to 2e picture-change effects (2ePCEs). A noticeable exception
exists, though, and has been coined the molecular mean-field exact
two-component approach (mmfX2C).32 In contrast to the 1eX2C
scheme, the mmfX2C ansatz is based on a unitary decoupling of
the 4c molecular mean-field Fock matrix after having converged
the 4c self-consistent field (SCF) Hartree–Fock equations. Although
strictly matching with the SCF results of those obtained with the cor-
responding defining 4c Hamiltonian,27,32 the mmfX2C approach will
still be an approximation in any ensuing post-SCF electron correla-
tion step for which the untransformed 2e interaction term replaces
its complete (transformed) counterpart.

Hence, the extent to which 2ePCEs are accounted for in an
X2C Hamiltonian based relativistic quantum-chemical framework
is essential for its applicability to address the electronic structure
theory problem in many-electron (molecular) systems involving
elements across the entire Periodic Table.31 To this end, we note
that the 2e interaction term can be decomposed into a spinfree or
scalar-relativistic (SC) as well as a spin-dependent or spin–orbit
(SO) part,1,33 where both the two-electron scalar-relativistic (2eSC)
and two-electron spin–orbit (2eSO) terms serve as a screening of
their 1e counterparts. Whereas much attention has been paid in the
past to efficiently take into account 2eSO PCEs based on a vari-
ety of ansätze, the 2eSC contributions are curiously, less commonly
included in correction schemes for 2ePCEs as has been compre-
hensively summarized in the Introduction of Ref. 34. Examples of
approximate 2eSO corrections range from using (i) a parameterized
model approach based on nuclear charges multiplied with element
and angular-momentum specific screening factors in the evalua-
tion of 1eSO integrals;35,36 (ii) a mean-field SO approach,37 which
has been the basis for the widely popular AMFI module38 inter-
faced, for example, with the software packages DIRAC,5 OPENMOL-
CAS,39 and DALTON;40 (iii) an approach that exploits atomic model
densities obtained within the framework of Kohn–Sham DFT (KS-
DFT).41–43 Interestingly, although the latter model-density-based
correction schemes are rare examples that, in addition to correc-
tions for 2eSO PCEs, do provide corrections for 2eSC PCEs, the
resulting correction terms do not discriminate between the use of
different exchange–correlation functionals employed in a molecular
X2C Hamiltonian-based Kohn–Sham DFT calculation. The screen-
ing factors of type (i) are sometimes referred to as “Boettger factors”
or as the screened–nuclear–spin–orbit (SNSO) approach.44 In cur-
rent usage, they have been obtained for a second-order, truncated
2c Hamiltonian ansatz (i.e., second-order Douglas–Kroll–Hess

(DKH2)) within the framework of density functional theory (DFT)44

but are remarkably, also, commonly employed in X2C Hamiltonian-
based wave function theory (WFT) approaches.45–47 To overcome
this discrepancy for their use in exact two-component theories, the
original SNSO approach has been reparametrized based on atomic
four-component Dirac–Hartree–Fock results.48 The resulting modi-
fied SNSO approach led to further improvement for the calculation
of molecular properties in a two-component framework with respect
to the parent four-component results.48,49

In their most recent work on suitable 2ePCE corrections for
the X2C Hamiltonian, Liu and Cheng34 proposed an atomic mean-
field (amf) approach that exploits a mean-field approximation for
PCEs originating from the 2eSO contribution, dubbed SOX2CAMF
by them, and combines “the four main ideas in relativistic quantum
chemistry (. . .): the X2C decoupling scheme, the 1e approximation
for SC effects (i.e., the neglect of the scalar 2e picture-change effects),
the mean-field SO approach, and the atomic approximation for the
2eSO interactions.”34 Thus, a key feature of the SOX2CAMF model
is that it does not require the evaluation of any molecular relativis-
tic 2e integral. Although it has in the meantime been employed
successfully in highly sophisticated electron correlation calculations
of heavy-element complexes,50 limitations of the underlying atomic
approximation to account for 2eSO PCEs have recently been pointed
out in the context of zero-field splittings of first row transition metal
complexes.51

In this paper, we introduce an atomic mean-field (amfX2C) as
well as an extended atomic mean-field (eamfX2C) approach within
the X2C Hamiltonian framework that not only takes into account
the above-mentioned four main ideas in relativistic quantum chem-
istry but also amends them such that the resulting amfX2C and
eamfX2C approaches will bridge the gap between a full molecular 4c
and mmfX2C framework in a computationally efficient, yet highly
accurate, way. In contrast to most existing correction schemes for
2ePCE, our amfX2C and eamfX2C approaches are laid out to com-
prise full 2ePCE corrections, that is, to treat the 2eSO and 2eSC ones
on the same footing, whether they arise from the (relativistic) 2e
Coulomb, Coulomb–Gaunt, or Coulomb–Breit interaction. More-
over, our ansatz takes into account the characteristics of the underly-
ing correlation framework, viz., WFT or (KS-)DFT, which enables us
to introduce tailor-made exchange–correlation-specific corrections
for 2ePCEs. Setting out from the idea of an amf approach within
the amfX2C Hamiltonian model—formulated for a WFT-based HF
and a DFT framework in Secs. II A and II B, respectively—the
extended amfX2C approach encompasses two-center 2e contribu-
tions obtained in a molecular framework. The implications arising
from the resulting eamfX2C approach, including its potential short-
comings and particular advantages, are then discussed in Sec. II C.
The numerical accuracy of both (e)amfX2C Hamiltonian models are
assessed based on the calculation of a variety of valence and core-like
molecular properties in Sec. IV where the computational details are
given in Sec. III. We summarize our results and findings in Sec. V
and summarize prospects for future developments.

II. THEORY
A. The amfX2C Hamiltonian–Hartree–Fock framework

A convenient starting point for our derivations to arrive
at suitable corrections for 2ePCEs in an X2C Hamiltonian
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framework is to consider the closed-shell 4c HF equations based on
the Dirac–Coulomb Hamiltonian,

F4cc4c
i = c4c

i ϵ4c
i . (1)

For convenience (see below), we express these equations in the
orthonormal basis obtained from the initial atomic orbital (AO)-
basis by some suitable orthogonalization procedure.52 The HF
energy and the Fock matrix have their usual definitions,

E4c
= E4c, 1e

+ E4c, 2e
=∑

μν
h4c

μνD4c
νμ +

1
2∑μνκλ

D4c
νμG4c

μν,κλD4c
λκ, (2)

F4c
μν = F4c, 1e

μν + F4c, 2e
μν = h4c

μν +∑
κλ

G4c
μν,κλD4c

λκ =
dE4c

dD4c
νμ

, (3)

in terms of the atomic orbital (AO) density matrix given by

D4c
μν =

occ

∑
i

c4c
μi c4c∗

νi (4)

and the matrix of anti-symmetrized two-electron AO integrals
given by

G4c
μν,κλ = I 4c

μν,κλ − I 4c
μλ,κν;

I 4c
μν,κλ ≡∬ Ω4c

μν(r1)r−1
12 Ω4c

κλ(r2)d3r1d3r2,
(5)

the latter expressed in terms of overlap distribution functions,6

Ω4c
μν(r) ≡ ∫ χ†

μ(r
′
)δ3
(r′ − r)χν(r′)d3r′ = χ†

μ(r)χν(r), (6)

over two-component basis functions χμ(r); formally, the basis
functions are four-component objects, but with the lower or upper
two components zero according to whether they are large (L) or
small (S).

The converged HF equations, Eq. (1), form the starting point
for the mmfX2C approach,32 where the Fock matrix and corre-
sponding positive-energy molecular-orbital (MO) coefficients (+)
are picture-changed to 2c form. Our computer implementations28,30

generate the picture-change transformation matrix U in orthonor-
mal basis since this provides control on possible linear dependencies
and simplifies the construction of the appropriate metric.29 The
picture-change matrix is subsequently transformed back to the ini-
tial AO-basis. For simplicity, and without loss of generality, we shall
consider the PC-transformation in orthonormal basis. Starting from
Eq. (1), we, therefore, write

F̃2c
μν ≡ [U

†F4cU]
LL

μν
; c̃2c

μi ≡ [U
†c4c
]

L+
μi

(7)

(note that we use tildes to indicate picture-change transformed
quantities). These quantities, together with the anti-symmetrized
two-electron AO integrals, Eq. (5), are then used to build the
normal-ordered Hamiltonian for use in subsequent wave function-
based correlation methods.

In the present case, we rather seek to carry out the SCF-
iterations themselves in 2c mode but in a manner such that we
optimally reproduce the 4c results. A first important observation
comes from consideration of the picture-change transformed Fock
matrix given by

F̃2c
μν =∑

XY
∑
αβ
[U†
]

LX

μα
[F4c
]

XY

αβ [U]
YL
βν ; X,Y ∈ L, S. (8)

Noting that the positive-energy 4c MO-coefficients can be expressed
in terms of their 2c counterparts,

c4c;+
= Uc̃ 2c

⇒ [c4c
]

X+
μi
=∑

ν
[U]XL

μν [c̃
2c
]

νi
; X ∈ L, S, (9)

we can reformulate the two-electron 2c Fock matrix as

F̃2c, 2e
μν =∑

XY
∑
αβ
[U†
]

LX

μα
[F4c, 2e

]
XY

αβ [U]
YL
βν

=∑
XY
∑
αβ
[U†
]

LX

μα

⎧⎪⎪
⎨
⎪⎪⎩

∑
UV
∑
γδ
[G4c
]

XY,UV

αβ,γδ
[D4c
]

VU

δγ

⎫⎪⎪
⎬
⎪⎪⎭

[U]YL
βν

=∑
XY
∑
αβ
[U†
]

LX

μα

⎧⎪⎪
⎨
⎪⎪⎩

∑
UV
∑
γδ
[G4c
]

XY,UV

αβ,γδ ∑
κλ

× ∑
i
[U]VL

δκ [c̃
2c
]

κi
[c̃ 2c∗

]
λi
[U∗]UL

γλ

⎫⎪⎪
⎬
⎪⎪⎭

[U]YL
βν (10)

=∑
κλ

⎧⎪⎪
⎨
⎪⎪⎩

∑
XYUV

∑
αβγδ
[U†
]

LX

μα
[U†
]

LU

λγ
[G4c
]

XY,UV

αβ,γδ [U]
VL
δκ [U]

YL
βν

⎫⎪⎪
⎬
⎪⎪⎭

× [D̃ 2c
]

κλ; X,Y,U,V ∈ L, S. (11)

As a consequence,

F̃2c
μν = h̃2c

μν +∑
κλ

G̃2c
μν,κλD̃2c

λκ. (12)

We see that the picture-change transformed Fock matrix can be
expressed in terms of the picture-changed transformed coefficients
as well as the picture-changed one- and two-electron integrals. By
similar manipulations, we can also show that the 4c HF energy can
be expressed in terms of corresponding 2c quantities, that is,

E4c
=∑

XY
∑
μν
[h4c
]

XY

μν
[D4c
]

YX

νμ +
1
2 ∑XYUV

× ∑
μνκλ
[D4c
]

YX

νμ
[G4c
]

XYUV

μν,κλ
[D4c
]

VU

λκ

=∑
μν
[h̃ 2c
]

μν
[D̃ 2c
]

νμ +
1
2∑μνκλ

[D̃ 2c
]

νμ
[G̃ 2c
]

μν,κλ

× [D̃ 2c
]

λκ = Ẽ 2c, 1e
+ Ẽ 2c, 2e. (13)

We conclude that provided we start from the correctly transformed
set of integrals, the 2c SCF will converge to the coefficients {c̃2c

i }

corresponding to the converged 4c SCF and we shall furthermore
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reproduce the positive orbital energies as well as total energy of the
parent 4c HF. However, the picture-change transformation U asso-
ciated with the converged 4c Fock matrix is not available at the start
of the SCF-iterations, forcing us to introduce approximations.

With this in view, a second important observation arises
from comparison of Eq. (12) with the Fock matrix built with
untransformed two-electron integrals G2c

μν,κλ,

F2c
μν = h̃2c

μν +∑
κλ

G2c
μν,κλD̃2c

λκ. (14)

We immediately find that their difference expresses the picture-
change correction of the two-electron integrals,

ΔF̃2c
μν = F̃2c

μν − F2c
μν =∑

κλ
ΔG̃2c

μν,κλD̃2c
λκ;

ΔG̃2c
μν,κλ = G̃2c

μν,κλ −G2c
μν,κλ.

(15)

Moreover, this differential Fock matrix may be used to correct the
two-electron HF energy,

Ẽ 2c, 2e
=

1
2∑μνκλ

D̃2c
νμG̃2c

μν,κλD̃2c
λκ =

1
2∑μν

D̃2c
νμ

× ∑
κλ

G2c
μν,κλD̃2c

λκ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F2c, 2e

μν

+
1
2∑μν

D̃2c
νμ∑

κλ
ΔG̃2c

μν,κλD̃2c
λκ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ΔF̃2c, 2e

μν

. (16)

We now seek a suitable approximation for the differential two-
electron Fock matrix ΔF̃ 2c, 2e. In line with previous authors, we
exploit the expected local atomic nature of the two-electron picture-
change corrections, but we will impose the condition that the scheme
should reproduce atomic 4c SCF calculations exactly at the 2c level.
We accordingly start from a superposition of converged atomic
quantities rather than the converged molecular one, i.e.,

ΔF̃ 2c, 2e
≃ ΔF̃2c, 2e

⊕ =
M
⊕
K=1

ΔF̃2c
K [D̃

2c
K ], (17)

where K runs over all atoms in an M-atomic system. Such
an approach defines our atomic mean-field exact two-component
scheme, denoted as amfX2C. We emphasize that the picture-change
correction given by Eq. (17) should be expressed in the original AO-
basis rather than the orthonormal one in order to avoid mixing of
basis functions from different centers. However, in order to avoid
notational overload, we do not distinguish matrix quantities in the
two different bases.

Due to the atomic nature of amfX2C two-electron picture-
change corrections, their evaluation scales linearly with the sys-
tem size (or sub-linearly if there are multiple instances of an
atomic type). To summarize the essentials, we propose the following
computational scheme to arrive at the amfX2C model:

1. For each atomic type K, we perform a 4c Kramers-restricted
(KR) average-of-configuration (AOC) HF calculation53 — or,
if the latter is not available, a 4c KR fractional occupation HF
calculation.

2. The converged atomic Fock matrix F4c
K is exactly block-

diagonalized to give its 2c counterpart F̃2c
K as well as picture-

changed coefficients c̃2c
K and density matrix D̃2c

K .

3. Using the latter quantity, we build the atomic 2c Fock matrix
F2c

K [D̃
2c
K ] with untransformed two-electron integrals, Eq. (14).

4. The differential atomic Fock matrix ΔF̃2c
K [D̃

2c
K ] is now built

according to Eq. (15).
5. The atomic matrices ΔF̃2c

K and F4c, 2e
K are then inserted in

the appropriate atomic blocks to form approximate molecu-
lar two-electron picture-change correction matrix (ΔF̃2c, 2e

⊕ ),
Eq. (17), and approximate molecular two-electron Fock
matrix (F4c, 2e

⊕ ), respectively,

F4c, 2e
≃ F4c, 2e

⊕ =
M
⊕
K=1

F4c, 2e
K [D4c

K ]. (18)

6. The molecular X2C decoupling matrix U is built from
h4c
+ F4c, 2e

⊕ .
7. Finally, SCF-iterations are carried out with amfX2C expres-

sions that approximate the exact molecular Fock matrix and
energy expressions,

F̃2c
μν ≃ F̃amfX2C

μν = h̃2c
μν + ΔF̃2c, 2e

⊕,μν
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

static term

+ F2c, 2e
μν [D̃

2c
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dynamic term

, (19)

Ẽ 2c
≃ Ẽ amfX2C

=∑
μν

D̃2c
νμ(h̃2c

μν +
1
2

ΔF̃2c, 2e
⊕,μν +

1
2

F2c, 2e
μν [D̃

2c
]).

(20)

A pseudo-code describing the essential steps of our amfX2C
approach for both HF and Kohn–Sham DFT theory is listed in
Algorithm 1.

B. The amfX2C Hamiltonian–Kohn–Sham DFT
framework

Section II A has so far exclusively focused on a discussion of
2ePCE corrections within a mean-field HF scheme. As indicated
in Algorithm 1, the proposed amfX2C scheme has also the appeal-
ing feature that it can straightforwardly be extended to a KS-DFT
framework.

1. The closed-shell case
We first consider the closed-shell molecular case and again start

from Eq. (1), but with the Fock matrix replaced by the KS one. The
4c energy and KS matrix read

E4c
=∑

μν
h4c

μνD4c
νμ +

1
2∑μνκλ

D4c
νμGω;4c

μν,κλD4c
λκ + E4c

xc[n
4c
], (21)

F4c
μν = h4c

μν +∑
κλ

Gω;4c
μν,κλD4c

λκ + ∫ vxc[n4c
](r)Ω4c

μν(r)d
3r;

vxc[n](r) =
δExc

δn(r)
.

(22)

Here, we have generalized the anti-symmetrized two-electron AO
integrals of Eq. (5) to include the weight ω of exact exchange. As
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Algorithm 1. Pseudo-code highlighting the essential steps for the amfX2C approach.

1: /∗ Initialize the molecular two-electron (2e) Fock matrices and XC energy ∗/
2: F4c, 2e

⊕ = 0; ΔF̃2c, 2e
⊕ = 0; ΔẼ2c

xc,⊕ = 0
3: for all unique atom types K ∈molecule do
4: Let {μ, ν} ∈ atomic basis K
5: /∗ Solve the 4c SCF equation ∗/

6: F4c
K c4c

K = c4c
K ϵ4c

K with F4c
K,μν =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

F4c,HF
K,μν [D

4c
K ] = h4c

K,μν + ∑
γ,δ∈K

G4c
μν,γδD4c

K,δγ

F4c,KS
K,μν [D

4c
K ] = h4c

K,μν + ∑
γ,δ∈K

Gω,4c
μν,γδD4c

K,δγ + F4c, xc
K,μν [D

4c
K ]

7: /∗ Add K-th atomic 2e Fock contrib. F4c, 2e
K to the corresponding molecular block ∗/

8: F4c, 2e
⊕ ← F4c, 2e

K with F4c, 2e
K,μν =

⎧⎪⎪
⎨
⎪⎪⎩

F4c,HF
K,μν [D

4cK ] − h4c
K,μν

F4c,KS
K,μν [D

4c
K ] − h4c

K,μν

9: /∗ Evaluate the atomic X2C decoupling matrix UK from F4c
K and calculate ∗/

10: D̃2c
K = [U

†
K D4c

K UK]
LL

; ΔF̃2c, 2e
K = [U†

K F4c, 2e
K UK]

LL
− F2c, 2e

K
11: /∗ where the latter term facilitates untransformed quantities G2c, Gω,2c, and F2c, xc

K
∗/

12: F2c, 2e
K,μν =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

F2c, 2e,HF
K,μν [D̃2c

K ] = ∑
γ,δ∈K

G2c
μν,γδD̃2c

K,δγ

F2c, 2e,KS
K,μν [D̃2c

K ] = ∑
γ,δ∈K

Gω,2c
μν,γδD̃2c

K,δγ + F2c, xc
K,μν [D̃

2c
K ]

13: /∗ Add K-th atomic block of the picture-change error correction to the corresponding molecular block. In case of DFT,
add also the atomic XC energy correction: ∗/

14: ΔF̃2c, 2e
⊕ ← ΔF̃2c, 2e

K ; ΔẼ2c
xc,⊕ ← (E4c

xc,K[D
4c
K ] − E2c

xc,K[D̃
2c
K ])

15: end for
16: Let {μ, ν} ∈ full molecular basis
17: /∗ Evaluate the molecular X2C decoupling matrix U from ∗/
18: h̃ 4c

= h4c
+ F4c, 2e

⊕
19: /∗ Solve the 2c SCF equation with the amfX2C Fock matrix operator ∗/
20: F2cc2c

= c2cϵ2c with F2c
μν ≡ FamfX2C

μν = [U†h4cU]LL
μν + ΔF̃2c, 2e

⊕,μν

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
static terms

+ F2c, 2e
μν [D2c

]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dynamic term

usual, Exc and vxc refer to the exchange–correlation (xc) energy
functional and the corresponding potential, respectively.

Formally, Exc may be expressed as an integral over an xc energy
density εxc,

Exc[n] = ∫ εxc[n](r)d3r, (23)

which is itself a functional of the number density (n). This allows,
for instance, the electron number to be known locally such that the
derivative discontinuity can be obeyed.54 Crucial for the following,
though, is that density functional approximations (DFA) employ
local ansätze. For instance, on the second rung of the “Jacob’s ladder”
of DFA,55,56 we find the generalized gradient approximation (GGA)

Exc[n] = ∫ εGGA
xc (n(r), g(r))d3r; g(r) = ∇n(r) ⋅∇n(r), (24)

where each integration point just needs local input.
Proceeding at the GGA/hybrid level, we find that the picture-

changed KS matrix can be expressed as

F̃2c
μν = h̃2c

μν +∑
κλ

G̃ω;2c
μν,κλD̃2c

λκ + ∫ vGGA
xc (n

4c
(r), g4c

(r))Ω̃2c
μν(r)d

3r.

(25)

We again recover an expression in terms of picture-changed quan-
tities, but the xc potential is seen to still use 4c variables as input.
However, proceeding as in the HF case [cf. Eq. (13) in Sec. II A], the
number density can be re-expressed in terms of 2c quantities,

n4c
(r) =∑

XY
∑
μν
[Ω4c
(r)]

XY

μν
[D4c
]

YX

νμ

=∑
μν
[Ω̃ 2c
(r)]μν

[D̃ 2c
]

νμ = ñ 2c
(r). (26)

Since the (correctly!) picture-changed transformed 2c number den-
sity ñ 2c is identical to the parent 4c quantity at all points in space,
this equivalence will also hold for their gradients, which allows us to
write

g4c
(r) = ∇ñ 2c

(r) ⋅∇ñ 2c
(r) = g̃ 2c

(r). (27)
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This also means that the xc energy and potential can be expressed
entirely in terms of 2c quantities

Ẽ2c
xc = ∫ εGGA

xc (ñ
2c
(r), g̃ 2c

(r))d3r, (28)

F̃2c, xc
μν = ∫ vGGA

xc (ñ
2c
(r), g̃ 2c

(r))Ω̃2c
μν(r)d

3r. (29)

In passing, we note that the direct use of the GGA xc potential leads
to contributions of the form

Fxc
μν = ∫ vGGA

xc (r)Ωμν(r)d3r;

vGGA
xc (r) = [

∂εGGA
xc

∂n
− 2∇ ⋅ ((

∂εGGA
xc

∂g
)∇n)](r).

(30)

However, the second term of the GGA potential will require the
expensive calculation of the Hessian of the number density (∇2n),
so usually a derivative is shifted over to the overlap distribution
Ωμν(r), using integration by parts, giving

Fxc
μν = ∫ [

∂εGGA
xc

∂n
Ωμν(r) + 2(

∂εGGA
xc

∂g
)∇n ⋅∇Ωμν(r)]d3r. (31)

Proceeding as above, the corresponding 2c quantity is found to be

F̃2c, xc
μν = ∫ [

dεGGA
xc

dn
Ω̃2c

μν(r) + 2(
∂εGGA

xc

∂g
)∇n4c

⋅∇Ω̃2c
μν(r)]d

3r. (32)

Again using integration by parts, we may recover Eq. (29). These
manipulations are thereby seen to commute with the picture-change
transformation, albeit only in the exact case. For simplicity, we will
continue with the form of Eq. (30).

Just as in the case of HF, we will argue that, if the 2c calculation
is carried out with the correctly transformed overlap distribution
Ω̃2c

μν(r), in addition to the picture-changed one- and two-electron
integrals, it will converge to the picture-changed coefficients c̃ 2c

obtained from the corresponding 4c calculation. However, again
the correct decoupling matrix U , i.e., the one associated with the
converged KS matrix, is not available at the start of calculations
and so, we will have to seek approximations. One option, pur-
sued by Iakabata and Nakai,57 is to use the decoupling matrix
U associated with the Dirac Hamiltonian instead. The point-wise
picture-change transformation of the overlap distribution, even with
local approximations, adds significant computational cost, though,
and the chosen decoupling matrix U is not optimal. An alternative
would be to make picture-change corrections to the number density,
starting from

Δñ 2c
(r) = ñ 2c

(r) − n2c
(r) = n4c

(r) − n2c
(r). (33)

Due to the local nature of the corrections, we would expect these
corrections to be separable into atomic contributions, possibly
approximated by model densities (see e.g., Refs. 41 and 42), that is

Δñ 2c
(r) ≃

M

∑
K=1

Δñ2c
K (r). (34)

Here, it is important to stress that the atomic number density n2c
K

(without the tilde) is untransformed in the sense that it employs
an untransformed overlap distribution matrix Ω2c

K but the cor-
rectly transformed coefficients {c̃2c

K,i} corresponding to the parent
4c atomic calculation. Since we expect Δñ2c

K (r) to be nonzero only
in the deep atomic core, one could exploit spherical symmetry by
calculating the correction on a radial grid. However, we have not
pursued this approach, since it still involves point-wise corrections,
albeit over a significantly reduced number of integration points.

Instead, we propose the following scheme which integrates
nicely with the scheme proposed for HF: For each atomic species K,
we run a 4c KR fractional occupation KS-calculation that provides
the converged atomic KS matrix F4c

K . From it, we can directly extract
the atomic decoupling matrix UK and the corresponding picture-
changed KS matrix F̃2c

K , notably containing F̃2c, xc
K . We next build the

untransformed equivalent

F2c, xc
K;μν = ∫ vGGA

xc (n
2c
K (r), g2c

K (r))Ω
2c
K;μν(r)d

3r, (35)

using the correctly picture-changed transformed coefficients c̃2c
K .

Our amfX2C picture-change correction to the xc potential is then
obtained from atomic quantities as

ΔF̃ 2c, xc
≃ ΔF̃2c, xc

⊕ =
M
⊕
K=1

ΔF̃2c, xc
K ;

ΔF̃2c, xc
K = F̃2c, xc

K − F2c, xc
K .

(36)

Similarly, the xc energy is corrected by first writing Ẽ2c
xc = E2c

xc + ΔẼ2c
xc

and then seeking an atomic approximation to the correction

ΔẼ2c
xc = ∫ εGGA

xc (ñ
2c
(r), g̃ 2c

(r))d3r

− ∫ εGGA
xc (n

2c
(r), g2c

(r))d3r. (37)

This results in our amfX2C picture-change correction to the xc
energy,

ΔẼ2c
xc ≃ ΔẼ2c

xc,⊕ =
M

∑
K=1
(Ẽ2c

xc;K − E2c
xc;K). (38)

At first sight, this looks like a rather poor approximation, since,
clearly,

∑
K

Ẽ2c
xc;K =∑

K
∫ εGGA

xc (ñ
2c
K (r), g̃2c

K (r))d
3r

≠ ∫ εGGA
xc (∑

K
ñ2c

K (r),∑
K

g̃2c
K (r))d3r, (39)

due to the general nonlinear form of the xc functionals. However, we
are calculating picture-change corrections and, so, one may expect
that points for which ñ2c

K (r) − n2c
K (r) deviates significantly from zero

for some atomic species K do not overlap with equivalent points
for any other species. Under such conditions, our approximation
becomes perfectly valid due to the local ansatz of the energy density
εxc, cf. Eq. (24).
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2. The noncollinear open-shell case
So far, we have discussed the KS amfX2C approach for a closed-

shell molecular system characterized by a time-reversal symmetric
density matrix. Due to the symmetry, the entire dependence of
the exchange–correlation energy density reduces for a local-density
approximation (LDA) only to the number density (n) [see Eq. (21)],
for a generalized gradient approximation (GGA) also to its gradient,
gnn ≡ (∇n)⋅(∇n).

The situation is more complex for open-shell systems, where
a general Kramers-unrestricted formalism results in a density
matrix that has both the time-reversal symmetric (TRS) and time-
reversal antisymmetric (TRA) components.6,58 In fact, the latter
component gives rise to a nonzero electron spin density, whose z-
component (sz) enters together with its gradient (∇sz) into the
nonrelativistic exchange–correlation energy expression, i.e., εGGA

xc
≡ εGGA

xc ({ρr}), ρ = n, gnn, sz , (∇sz ⋅∇sz), (∇n⋅∇sz).
However, the presented parametrization of the

exchange–correlation energy involving only the z-component
of the electron spin density and its gradient is inadequate for
theories including the spin–orbit interaction, since the spatial and
spin degrees of freedom are no longer independent. Their coupling
results in a lack of rotational invariance of the exchange–correlation
energy if only z spin-components are involved. This variance can be
circumvented by a noncollinear parametrization/generalization of
the nonrelativistic exchange–correlation energy density.

A common noncollinear ansatz follows earlier LDA-based
works of Kubler et al.,59 Sandratskii,60 and van Wuellen61 where the
variable sz is replaced by its corresponding magnitude ∣s∣. Although
this extension possesses no numerical problems in the evaluation
of exchange–correlation energy, noncollinear potentials and ker-
nels derived from GGA-type functionals are prone to numerical
instabilities.58 A more recent approach, which has been adopted
in this work, is based on the noncollinear ansatz proposed by
Scalmani and Frisch,62 where variables depending on the z quan-
tization axis are substituted by more adequate rotationally invariant
counterparts,

sz → s ≡ ∣s∣; (∇sz)⋅(∇sz)→ gss ≡∑
k
(∇sk) ⋅ (∇sk);

(∇n)⋅(∇sz)→ gns ≡ f∇g.
(40)

Here, k ∈ x, y, z, g ≡ ∣g∣ with gk = (∇n)⋅(∇sk), and f∇ = sgn(g ⋅ s).
The noncollinear exchange–correlation energy then reads

Exc = ∫ εGGA
xc ({ρr})d3r, ρ = n, gnn, s, gss, gns, (41)

whereas the noncollinear exchange–correlation potential has the
form58

Fxc
μν =

dExc

dDνμ
= ∫

⎛

⎝
vn

xc Ω0
μν + v

s
xc∑

k

sk

s
Ωk

μν

+ 2vgnn
xc ∑

k
(∇kn)∇kΩ0

μν + 2vgss
xc∑

k,l
(∇lsk)∇lΩ

k
μν

+ v
gns
xc∑

k,l
f∇

gk

g
[ (∇lsk)∇lΩ

0
μν + (∇ln)∇lΩ

k
μν]
⎞

⎠
d3r.

(42)

Here, k, l ∈ x, y, z and v
ρ
xc refer to the partial derivative of εGGA

xc with
respect to ρ ∈ n, gnn, s, gss, gns. Ω0

μν and Ωk
μν stand for the overlap and

spin distribution functions, respectively, the latter being defined
similarly to Ω0

μν in Eq. (6) as

Ωk
μν(r) ≡ χ†

μ(r)Σ̂kχν(r) (43)

and involving components of the electron spin operator Σ̂.58 Note
that the evaluation of the exchange–correlation potential in Eq. (42)
requires special attention to the limiting cases when the s or g func-
tions approach zero. A detailed description of such a procedure is
given in Ref. 58.

C. Extended amfX2C Hamiltonian
Having introduced the amfX2C scheme for both HF and KS

mean-field theories, let us conclude this theory section by comment-
ing on some important aspects of the amfX2C scheme, as well as
comparing it to existing models for 2ePCE corrections. Ultimately,
the discussion leads to the introduction of an extended amfX2C
model, dubbed eamfX2C, which has the potential to outperform
the amfX2C model, for instance, in properly treating long-range
Coulomb interactions in solids.

We start by noting that (i) in contrast to Liu and Cheng,34 our
amfX2C scheme allows to take into account PCE corrections for
both spin-independent and spin-dependent parts of the two-electron
interaction; (ii) the proposed amfX2C approach has the additional
appealing feature that it allows its straightforward extension to a KS-
DFT framework as discussed in Sec. II B; (iii) the algebraic nature of
amfX2C also allows an easy extraction of 2ePCE corrections not only
from the common 2e Coulomb interaction term but also from more
elaborate Gaunt and Breit 2e-interaction terms; and (iv) the 2ePCE
corrections are only introduced in the atomic diagonal blocks. This
further implies the following:

● The 2ePCE corrections will not contribute to the molecular
gradient.

● The direct 2e Coulomb contribution will not cancel exactly
the electron–nucleus interaction at long distance from
atomic centers, which potentially prevents a direct appli-
cation of amfX2C in solid-state calculations. This issue
was discussed, for instance, by van Wüllen and Michauk
and solved by building the former contributions using
a superposition of atomic model densities,41 although
such a scheme does not accommodate HF exchange
contributions.

In order to overcome the latter, particular shortcoming of the
amfX2C model, we additionally propose a modified amfX2C model
that exploits a superposition of atomic density matrices (expressed
in AO-basis). The resulting extended amfX2C model (eamfX2C) is
summarized in Algorithm 2. Most importantly, in contrast to the
amfX2C model, where we assemble a molecular 4c Fock matrix F4c

⊕
from atomic building blocks (see line 8 in Algorithm 1), this task
is replaced in the eamfX2C algorithm by the buildup of a molec-
ular density matrix D4c

⊕ from atomic density matrices as indicated
in line 10 of Algorithm 2. The latter construction, therefore, entails
the evaluation of a two-electron (KS-)Fock matrix contribution in
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Algorithm 2. Pseudo-code highlighting the essential steps for the eamfX2C approach.

1: /∗ Initialize the molecular effective density matrices ∗/
2: D4c

⊕ = 0; D̃2c
⊕ = 0

3: for all unique atom types K ∈molecule do
4: Let {μ, ν} ∈ atomic basis K
5: /∗ Solve the 4c SCF equation ∗/

6: F4c
K c4c

K = c4c
K ϵ4c

K with F4c
K,μν =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

F4c,HF
K,μν [D

4c
K ] = h4c

K,μν + ∑
γ,δ∈K

G4c
μν,γδD4c

K,δγ

F4c,KS
K,μν [D

4c
K ] = h4c

K,μν + ∑
γ,δ∈K

Gω,4c
μν,γδD4c

K,δγ + F4c, xc
K,μν [D

4c
K ]

7: /∗ Evaluate the atomic X2C decoupling matrix UK from F4c
K and calculate ∗/

8: D̃2c
K = [U

†
K D4c

K UK]
LL

9: /∗ Add K-th atomic effective density matrices D4c
K and D̃2c

K to the molecular block ∗/
10: D4c

⊕ ← D4c
K ; D̃2c

⊕ ← D̃2c
K

11: end for
12: Let {μ, ν} ∈ full molecular basis
13: /∗ Evaluate the molecular 4c 2e Fock matrix F4c, 2e

⊕ with elements ∗/

14: F4c, 2e
⊕,μν =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

F4c, 2e,HF
⊕,μν [D4c

⊕] =∑
γ,δ

G4c
μν,γδD4c

⊕,δγ

F4c, 2e,KS
⊕,μν [D4c

⊕] =∑
γ,δ

Gω,4c
μν,γδD4c

⊕,δγ + F4c, xc
μν [D

4c
⊕]

15: /∗ If DFT, evaluate also the molecular xc energy E4c
xc[D4c

⊕]
∗/

16: /∗ Evaluate the molecular X2C decoupling matrix U from ∗/
17: h̃ 4c

= h4c
+ F4c, 2e

⊕
18: /∗ Determine the molecular 2e picture-change transformation correction as ∗/
19: ΔF̃2c, 2e

⊕ = [U†F4c, 2e
⊕ U]LL

− F2c, 2e

20: where

21: F2c, 2e
μν =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

F2c, 2e,HF
μν [D̃2c

⊕] =∑
γ,δ

G2c
μν,γδD̃2c

⊕,δγ

F2c, 2e,KS
μν [D̃2c

⊕] =∑
γ,δ

Gω,2c
μν,γδD̃2c

⊕,δγ + F2c, xc
μν [D̃

2c
⊕]

22: /∗ If DFT, determine also the molecular PCE correction to the xc energy as ∗/
23: ΔẼ2c

xc,⊕ = E4c
xc[D4c

⊕] − E2c
xc[D̃2c

⊕]
24: /∗ Solve the 2c SCF equation with the eamfX2C Fock matrix operator ∗/
25: F2cc2c

= c2cϵ2c with F2c
μν ≡ FeamfX2C

μν = [U†h4cU]LL
μν + ΔF̃2c, 2e

⊕,μν

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
static terms

+ F2c, 2e
μν [D2c

]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dynamic term

the full molecular basis within a 4c framework (cf. line 14 of Alg.2),
which is absent in the molecular computational panel (lower part
of Algorithm 1) of the simpler amfX2C model. Although introduc-
ing such a requirement seems odd at a first glance, in particular, with
regard to computational scaling, let us recall that an efficient density-
based screening in the two-electron (KS-)Fock matrix construction
will enable a calculation of the term F4c, 2e

μν [D4c
⊕] at a fractional cost

of a regular two-electron (KS-)Fock matrix evaluation because of
the sparsity associated with the molecular density matrix D4c

⊕ . In
this regard, one can recognize a similarity between the eamfX2C
scheme and the atomic initial guess proposed by van Lenthe and
co-workers63 where the initial Fock matrix is formed from a super-
position of atomic density matrices. Moreover, in the KS-DFT
framework, one can also easily obtain the xc energy picture-change
correction (Algorithm 2, line 23) from contributions evaluated in the
full molecular basis,

ΔẼ2c
xc ≃ Ẽ2c

xc,⊕ = E4c
xc[D

4c
⊕] − E2c

xc[D̃
2c
⊕], (44)

in contrast to the correction term ΔẼ2c
xc of the amfX2C model (Algo-

rithm 1, line 14), which consists of a sum of K contributions each
calculated in the Kth atomic basis.

D. A remark on notations
Since the combination of a several 2ePCE correction mod-

els with multiple defining Hamiltonians for obtaining the unitary
decoupling matrix U may easily lead to confusion, we have decided
to introduce a notation for X2C Hamiltonians where the 2ePCE cor-
rection model is given as a prefix “a” while the defining Hamiltonian
matrix h4c

def is given as subscript b, that is, aX2Cb.
In particular, we have
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a =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1e if no 2ePCE corrections added: ΔF̃ 2c, 2e
= 0

amf if atomic–mean field 2ePCE corrections added: ΔF̃ 2c, 2e
≃ ΔF̃2c, 2e

⊕ (see line 14 in Alg. 1)

eamf if extended atomic–mean field 2ePCE corrections added: ΔF̃ 2c, 2e
≃ ΔF̃2c, 2e

⊕ (see line 19 in Alg. 2)

AMFI if atomic–mean field first–order (DKH1) spin–orbit 2ePCE corrections added: see Refs. 37 and 38

mmf if post–SCF molecular–mean field 2ePCE corrections added: see Ref. 32

and

b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

D if U is evaluated from h4c
def ≡ h4c where h4c is the one–electron Dirac Hamiltonian

DC if U is evaluated from h4c
def ≡ h4c

+ F4c, 2e
⊕ with Coulomb integrals contributing to F4c, 2e

⊕
DCG if U is evaluated from h4c

def ≡ h4c
+ F4c, 2e

⊕ with Coulomb–Gaunt integrals contributing to F4c, 2e
⊕

DCB if U is evaluated from h4c
def ≡ h4c

+ F4c, 2e
⊕ with Coulomb–Breit integrals contributing to F4c, 2e

⊕ .

III. COMPUTATIONAL DETAILS

If not stated otherwise, all calculations reported in this work
have been carried out by both DIRAC5 and RESPECT6 programs,
making use of a common computational setup: (i) a finite value
for the speed of light c = 137.035 999 074 00 a0Eh/h̵,64 (ii) a point
nucleus model for all atomic nuclei to ease comparison between data
obtained by the programs, (iii) an explicit inclusion of (SS∣SS)-type
electron-repulsion AO integrals, (iv) atom-centered uncontracted
Gaussian-type basis sets of double-ζ quality (dyall.v2z, dubbed v2z)
for each unique atom type,65–72 (v) DIRAC’s default numerical inte-
gration grids consisting of the basis-set adaptive radial quadrature
by Lindh et al.,73 and the angular quadrature by Lebedev74–76 (to
achieve consistent exchange–correlation PCE corrections by both
programs, it turned out be crucial to use integration grids of identical
composition and quality), and (vi) a threshold for SCF convergence
of 10−7 in the error vector of the direct inversion of the itera-
tive subspace (DIIS)77 algorithm DIIS77. All atomic and molecular

calculations with DIRAC were performed within a Kramers-
restricted (KR) formalism, employing for open-shell systems either
an average-of-configuration (AOC) approach53 (HF) or a frac-
tional occupation (FO) approach (KS-DFT). In the case of group
16 diatomics (chalcogenide series), AOC-HF calculations take into
account all possible configurations of six electrons in eight Kramers-
paired spinors (i.e., representing the π, π∗ valence shells). In
RESPECT, molecular open-shell calculations were performed within
a Kramers-unrestricted (KU) formalism,6 whereas atomic results
were obtained with the KR FO approach, both for HF and for KS-
DFT calculations. All KS-DFT calculations were carried out with
either a PBE or PBE0 exchange–correlation functional.78–80

For the lighter noble gas dimers, internuclear distances were
taken from experimentally available data81 whereas for the heavier
homologues Rn2 and Og2, respectively, computationally optimized
structures were taken from Ref. 82. Similarly, in the case of the
chalcogen series, all geometries were taken from Ref. 83, except for
the heaviest diatomic system Lv2 for which the internuclear distance

FIG. 1. Differences of spin–orbit splittings (ΔSO
X ) of the inner-core to outer-core Og-atomic-like shells in Og2 with respect to the 4DC reference values within either an HF

approach [panel (a)] or a DFT/PBE approach [panel (b)]. All data are compiled from the SCF spinor energies listed in Tables II and III, respectively. Energy differences are
given in eV. Note that errors associated with the (e)amfX2C models are not visible in the figures.
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of Re = 3.230 Å was extracted by visual inspection from Fig. 1 of
Ref. 84. Table I summarizes the structural parameters for all group
16 and group 18 diatomics employed in this work.

In the case of the methane molecule CH4 discussed in
Sec. IV A 3, we assumed a Td-symmetrical molecular framework
with a C–H internuclear distance of 1.091 Å and a <H–C–H bond
angle of 109.471○. In order to enhance relativistic effects, we scaled
down the speed of light c by a factor of 10, corresponding to an actual
value of cscaled = 13.703 599 907 400 a0Eh/h̵, for both the atomic as
well as the molecular calculations.

The absolute contact densities and contact density shifts for
selected (closed-shell) copernicium fluorides (CnFn, n = 0, 2, 4, 6),
discussed in Sec. IV B, were calculated from mean-field HF wave
functions employing a 4c Dirac–Coulomb as well as the X2C Hamil-
tonian supplemented with various 2ePCE corrections. The struc-
tures for each of the copernicium fluorides were optimized within
a 4c Dirac–Coulomb framework by means of KS-DFT calculations
employing the PBE0 exchange–correlation functional. Following the
very recent work of Hu and Zou,85 we assumed for the structure
optimization a linear (n = 2), square-planar (n = 4), and octa-
hedral (n = 6) geometry for the respective copernicium fluorides
CnFn. The resulting equilibrium Cn–F internuclear distances are
compiled in Table X along with the corresponding double group
symmetry. It is worth noting that, given that the primary concern
of our the present study is not to provide an accurate computa-
tion of the contact density with respect to a converged basis-set
saturation at the heavy nuclei Cn, we did not pursue any fur-
ther augmentation of the set of primitives in the basis set as, for
example, done in our earlier works in Refs. 86 and 87. More-
over, as we aim within the e(amf)X2C models to reproduce as
accurately as possible the parent four-component results, compu-
tational details for the two-component calculations have to match
the corresponding ones for four-component reference calculations.
Hence, any consideration for convergence in the basis set, crucial
to obtain quantitatively converged contact densities, holds simulta-
neously in both cases: in a four-component and a two-component
framework.

Finally, Sec. IV C comprises an assessment of the accuracy and
suitability of various 2c approaches to adequately describe (abso-
lute) K- and L-edge core-ionization energies as well as L3-L2-edge
spin–orbit splittings, denoted as ΔSO

L , for heavy d- and p-block
compounds. To this end, we considered one atomic anion (At−)

TABLE I. Structural parameters of the group 16 (left-hand side) and group 18
diatomics (right-hand side) considered in this work. All internuclear distances are
given in Å.

Molecule rX−X Reference Molecule rX−X Reference

He2 2.970 81
O2 1.207 52 83 Ne2 3.091 81
S2 1.889 83 Ar2 3.756 81
Se2 2.166 83 Kr2 4.008 81
Te2 2.557 83 Xe2 4.363 81
Po2 2.795 83 Rn2 4.427 82
Lv2 3.230 84 Og2 4.329 82

and two anionic and neutral molecular cases, respectively. In the
former case, we employed the same computational setup for the
SCF and equation-of-motion coupled-cluster singles-and-doubles
(EOM-CCSD88 calculations as described in full detail in Ref. 89,
which provides high-quality computational reference data. In the
remaining molecular examples, we employed for CnF6 the opti-
mized molecular structure listed in Table X, while for [Au(Cl)4]

−

the optimized molecular structure has been taken from Table I (col-
umn MP2/aug-cc-pVTZ) in Ref. 90. In either molecular case, we
correlated for the EOM-CCSD step all electrons and introduced an
energy-based cutoff in the virtual spinor space at 3 Hartree making
use of the dyall.v2z basis sets for all atom types. Since we are solely
interested in a genuine comparison of different two-component
Hamiltonian models rather than achieving quantitatively converged
results for the K-edge, L-edge, and M-edge (the latter only for
the [Au]-complex) ionization potentials, which would require, for
example, to make use of tailored basis sets,91 the latter motivates for
the present work our choice to merely aim at a qualitative electron
correlation treatment.

IV. RESULTS AND DISCUSSION
In this section, we will critically assess the accuracy of our newly

developed 2ePCE correction approaches for all-electron X2C HF
and DFT calculations in the two major, common-use cases: (i) with
a variational account of SO interaction and (ii) in a genuine spinfree
SC framework. A detailed summary of the notation of the 2ePCE
correction applied to the X2C Hamiltonian can be found in Sec. II D.

In Sec. IV A, we commence with a discussion of the spinor
energies of Og2, a prototypical, closed-shell superheavy diatomic
molecule, optimized both within a mean-field HF and a KS-DFT
computational model (Sec. IV A 1). Results for the lighter homo-
logues of the corresponding group 18 diatomics can be found in the
public research repository ZENODO (see Sec. V for more details).
Along the same lines and as an example of an open-shell diatomic
molecule, we consider in Sec. IV A 2 the case of Te2 as a represen-
tative of the group 16 diatomics. Results for the remaining group
16 diatomics listed in Table I can also be found in the ZENODO
repository (see Data Availability for more details). To conclude
the discussion on total as well as spinor energies, we assess in
Sec. IV A 3 the numerical performance of our selection of PCE-
corrected X2C models for the case of an “ultrarelativistic” methane
molecule employing a ten-fold reduced speed of light c, that is, c/10.

Next, in Sec. IV B, we evaluate the suitability of our (e)amf-X2C
models for the calculation of absolute contact densities at a heavy
nuclear center and, equally important, for contact density shifts. The
latter play, for example, an important role in computational models
for the determination of isomer shifts that are accessible in exper-
imental Mössbauer spectroscopy. To this end, we perform contact
density calculations for a series n (with n = 0, 2, 4, 6) of fluoride com-
pounds of the heaviest group 12 member Cn, ranging from the bare
Cn atom to the hexafluoride CnF6.

In Sec. IV C, we conclude our assessment by focusing on the
calculation of correlated x-ray core-ionization energies. Besides the
At− mono-anion for which benchmark data are available in the
literature,89 we consider two molecular applications of 5d- and 6d-
containing molecules by taking advantage of the recently developed
EOM-CCSD approach for core spectroscopy.89
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A. Spinor energies of (super)heavy
diatomic molecules
1. Closed-shell Og2

In the following, we will assess the numerical performance
of our atomic mean-field PCE correction model and its extended
version within the context of an exact two-component decoupling
approach by considering as prime example the heaviest group 18
dimer, viz., Og2. Since the molecule is closed-shell in its elec-
tronic ground state, both the Kramers-restricted and the Kramers-
unrestricted SCF formalism implemented in DIRAC and RESPECT,
respectively, converge to the same solution. In order to underline
the importance of a simultaneous treatment of 2eSC and 2eSO PCE
corrections within the X2C Hamiltonian framework, we compile in
Table II a selected set of HF spinor energies for Og2, ranging from
the inner-core to the outer-core as well as to the valence region,
and we compare the various X2C-based spinor energies with the
4c Dirac–Coulomb reference data (4DC; sixth column in Table II).
In addition, the left panel of Fig. 1 comprises the HF-based devi-
ations for SO splittings of the inner-core and outer-core shells of
Og2 with predominant atomic-like character illustrated for results
obtained with the various two-component Hamiltonian schemes

listed in Table II by comparison to the 4DC reference. Finally, the
right panel of Fig. 1 provides a similar comparison for a correlated
KS-DFT-based approach employing the PBE functional where the
underlying absolute energies are summarized in Table III.

a. HF. In line with previous studies,31,41 we find the largest
deviations within an X2C framework from the reference 4c spinor
energies in an HF approach for the innermost s and p shells where
2eSO (p shells) and 2eSC PCE corrections (s and p shells) are
expected to be of utmost importance (see also the discussion of
core-ionization energies in Sec. IV C). Hence, considering first the
bare one-electron X2C (second column, 1eX2CD in Table II), which
ignores 2e picture changes altogether, we encounter deviations up to
+23.8 Hartree with respect to the four-component reference data for
the innermost s shells and up to −7.2 Hartree for the lowest-lying p
shells. Next, taking into account atomic SO mean-field PCE correc-
tions within the AMFI model (third column, AMFIX2CD) results in
a minor improvement of about −0.4 Hartree for the inner s shells
while the lowest-lying p shells become destabilized through the PCE
corrections by about +10 Hartree, leading to a deviation of ≈ +2.7
Hartree with respect to the corresponding 4c reference values.

TABLE II. SCF total energy (E) and spinor energies of selected doubly degenerate occupied spinors (ϵ) for Og2 as obtained
from HF/v2z calculations within a four-component Dirac–Coulomb (4DC) as well as a two-component Hamiltonian framework,
including the new (e)amfX2CDC models. All energies are given in Hartree.

1eX2CD AMFIX2CD amfX2CDC eamfX2CDC
4DC

E −110 045.256 93 −110 015.966 88 −110 116.091 02 −110 116.091 02 −110 116.091 01
ϵ1−2 −8248.362 74 −8248.695 05 −8272.125 30 −8272.125 29 −8272.125 29
ϵ3−4 −1733.891 54 −1734.001 01 −1738.997 64 −1738.997 63 −1738.997 63
ϵ5−6 −1693.296 07 −1683.361 33 −1686.063 74 −1686.063 74 −1686.063 74
ϵ7−10 −1133.936 51 −1136.418 86 −1137.979 05 −1137.979 04 −1137.979 04
ϵ11−12 −474.973 49 −475.013 15 −476.180 10 −476.180 10 −476.180 10
ϵ13−14 −454.670 04 −452.301 45 −452.933 31 −452.933 31 −452.933 31
ϵ15−18 −317.105 73 −317.769 56 −318.141 42 −318.141 42 −318.141 42
ϵ19,−,22 −287.847 02 −286.460 16 −286.468 62 −286.468 61 −286.468 61
ϵ23−28 −264.511 00 −265.355 39 −265.514 76 −265.514 76 −265.514 76
ϵ29,−,30 −142.096 99 −142.111 36 −142.432 46 −142.432 46 −142.432 46
ϵ31−32 −131.900 02 −131.201 72 −131.364 62 −131.364 62 −131.364 62
ϵ33−36 −91.647 27 −91.851 15 −91.948 18 −91.948 18 −91.948 18
ϵ37−40 −76.613 48 −76.208 53 −76.196 82 −76.196 82 −76.196 82
ϵ41−46 −70.008 92 −70.257 53 −70.287 99 −70.287 99 −70.287 99
ϵ47−52 −50.088 77 −49.760 60 −49.737 04 −49.737 03 −49.737 03
ϵ53−60 −47.748 19 −47.990 85 −47.990 04 −47.990 04 −47.990 04
. . . . . . . . . . . . . . . . . .
ϵ110 −1.470 90 −1.482 71 −1.481 61 −1.481 62 −1.481 62
ϵ111 −1.313 83 −1.313 14 −1.316 99 −1.316 98 −1.316 98
ϵ112 −1.312 54 −1.311 85 −1.315 72 −1.315 71 −1.315 71
ϵ113 −0.746 47 −0.737 30 −0.738 19 −0.738 19 −0.738 19
ϵ114 −0.743 81 −0.734 55 −0.735 45 −0.735 45 −0.735 45
ϵ115 −0.316 91 −0.318 26 −0.318 21 −0.318 22 −0.318 22
ϵ116 −0.303 72 −0.305 16 −0.305 12 −0.305 12 −0.305 12
ϵ117 −0.292 60 −0.294 13 −0.294 11 −0.294 11 −0.294 11
ϵ118 −0.280 36 −0.281 96 −0.281 94 −0.281 93 −0.281 93
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TABLE III. SCF total energy (E) and spinor energies (ϵ) of the doubly degenerate occupied spinors for Og2 as obtained
from DFT/PBE/v2z calculations within a four-component Dirac–Coulomb (4DC) as well as a two-component Hamiltonian
framework, including the new (e)amfX2CDC models. All energies are given in Hartree.

1eX2CD AMFIX2CD amfX2CDC eamfX2CDC
4DC

E −110 101.192 89 −110 071.817 03 −110 191.687 17 −110 191.687 17 −110 191.687 16
ϵ1−2 −8194.400 21 −8194.743 58 −8228.578 26 −8228.578 26 −8228.578 26
ϵ3−4 −1714.663 79 −1714.767 64 −1720.619 64 −1720.619 64 −1720.619 64
ϵ5−6 −1675.008 48 −1665.139 58 −1672.435 70 −1672.435 70 −1672.435 70
ϵ7−10 −1119.860 23 −1122.324 02 −1124.503 68 −1124.503 67 −1124.503 67
ϵ11−12 −465.421 15 −465.455 60 −466.742 89 −466.742 89 −466.742 89
ϵ13−14 −445.526 84 −443.183 39 −444.878 50 −444.878 50 −444.878 49
ϵ15−18 −309.804 99 −310.459 33 −310.944 33 −310.944 33 −310.944 33
ϵ19,−,22 −281.438 39 −280.068 78 −280.357 30 −280.357 30 −280.357 30
ϵ23−28 −258.404 60 −259.237 60 −259.442 79 −259.442 79 −259.442 79
ϵ29,−,30 −137.014 95 −137.026 61 −137.366 44 −137.366 44 −137.366 44
ϵ31−21 −127.091 44 −126.403 62 −126.860 89 −126.860 89 −126.860 89
ϵ33−26 −87.691 23 −87.889 59 −88.004 19 −88.004 18 −88.004 18
ϵ37−40 −73.278 01 −72.881 07 −72.934 37 −72.934 37 −72.934 37
ϵ41−46 −66.867 98 −67.111 11 −67.140 79 −67.140 78 −67.140 78
ϵ47−52 −47.780 11 −47.458 64 −47.455 76 −47.455 76 −47.455 76
ϵ53−60 −45.500 42 −45.737 73 −45.722 33 −45.722 33 −45.722 33
. . . . . . . . . . . . . . . . . .
ϵ110 −1.165 75 −1.176 60 −1.174 08 −1.174 09 −1.174 09
ϵ111 −1.005 57 −1.005 35 −1.007 95 −1.007 95 −1.007 95
ϵ112 −1.004 85 −1.004 63 −1.007 24 −1.007 24 −1.007 24
ϵ113 −0.541 22 −0.533 07 −0.536 04 −0.536 03 −0.536 03
ϵ114 −0.539 07 −0.530 85 −0.533 84 −0.533 84 −0.533 84
ϵ115 −0.209 29 −0.210 28 −0.210 07 −0.210 07 −0.210 07
ϵ116 −0.199 42 −0.200 48 −0.200 27 −0.200 27 −0.200 27
ϵ117 −0.191 01 −0.192 15 −0.191 94 −0.191 94 −0.191 94
ϵ118 −0.183 04 −0.184 21 −0.184 01 −0.184 00 −0.184 00

By contrast, both our amfX2CDC and eamfX2CDC PCE correc-
tion schemes for the X2C Hamiltonian yield spinor energies that
merely differ by 10 μHartree or less for the innermost s shells—and
likewise for the p shells—of Og2 from the 4c reference data. These
findings strikingly illustrate the excellent numerical performance
of our newly proposed amf-based 2eSC- and 2eSO-PCE correc-
tions applied in a molecular framework. Moreover, in particular
in the core region close to a (heavy) nucleus, SO splittings are a
crucial measure since they probe the ability of PCE-corrected 2c
schemes to provide quantitative relative energies. Here, calculations
employing the 1eX2CD as well as the AMFIX2CD Hamiltonian yield
SO splittings for the atomic-like shells (ΔSO

X , X = p, d, f obtained as
energy difference ϵX(2l+1)/2 − ϵX(2l−1)/2 ) in Og2, which deviate signifi-
cantly from the 4DC reference data as illustrated in Fig. 1(a) with
data obtained from Table II. For example, for the bare 1eX2CD
approach, we find deviations in ΔSO

X of up to ≈ +11.3 Hartree for
the 2p shell, which corresponds to an overestimation of the split-
ting by ≈ 2%. Moving to outer-core shells, the overestimation of the
SO splitting ΔSO becomes even worse with deviations as large as ≈
+25% for ΔSO

4 f . As can be seen from Fig. 1(a), the latter deviations
can be reduced significantly for all inner- and outer-core spin–orbit-
split shells through the introduction of AMFI-based SO mean-field

PCE corrections within AMFIX2CD. Finally, as it is evident from
the matching absolute spinor energies discussed above, all SO split-
tings considered in Fig. 1(a) obtained within our (e)amfX2CDC
Hamiltonian frameworks match (within significant digits) their 4c
reference data (errors are, therefore, not visible in the figure), under-
lining once more the importance of taking into account both 2eSC-
and 2eSO-PCE corrections in an X2C many-electron Hamiltonian
framework.

In passing, we note that the numerical performance of our
(e)amfX2C models not only holds for the inner- and outer-core
but also for the corresponding valence shells (ϵ110−118 in Table II)
of the diatomic Og2 where the 4DC and (e)amfX2CDC data essen-
tially remain indistinguishable within significant digits. It is worth
noting that in the (outer-)valence region, the AMFIX2CD approach
leads to absolute spinor energies that differ by less than 10−3 Hartree
from their reference values. Hence, the latter may explain why
this PCE correction scheme has successfully been applied in the
past in numerous numerical applications that particularly probed
valence-dominated properties. Finally, our data in Table II fur-
ther show that neglecting PCE corrections results even for valence
spinors in absolute errors for the spinor energies on the order
of 10−2 Hartree.
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b. DFT/PBE. What about the numerical performance of our
(e)amf PCE correction models in a correlated framework? To this
end, we consider in the following the same prime superheavy
diatomic molecular system Og2 (vide supra) within a DFT/PBE-
based SCF approach. A particularity of our (e)amf PCE correction
models is rooted in the fact that, as illustrated in Algorithms 1 and 2,
respectively, both models enable not only a basis-set dependent but
also a self-consistent-field model dependent PCE correction that orig-
inates from the specific contributions entering the corresponding 2e
Fock matrices. The latter implies that our (e)amf PCE correction
models provide tailor-made PCE corrections that explicitly account
for the subtleties arising from the employed exchange–correlation
functional within a KS-DFT-based SCF approach. By contrast, to the
best of our knowledge, common PCE schemes, such as the AMFI
approach, do—by construction—not allow to distinguish between
2eSO PCE corrections for the X2C Hamiltonian that aim for either
an ensuing (uncorrelated) 2c HF or (correlated) KS-DFT-based
many-electron SCF calculation. Bearing these subtle, yet crucial,
details in mind, the strikingly excellent numerical performance of
our (e)amfX2CDC models with respect to the 4DC reference spinor
energies as well as total energies illustrated in Table III not only
underlines the outstanding numerical performance of our newly
proposed PCE correction ansätze but also perfectly agrees with our
previous conclusions within the HF approach (vide supra). More-
over, the SO splittings ΔSO

X of the (e)amfX2CDC and 4DC cases
match again exactly within significant digits for all the selected
inner-core and outer-core atomic-like shells shown in Fig. 1(b).
Notably, as indicated above, the (basis-set dependent) AMFI-based
SO PCE corrections are SCF-model independent and, hence, strictly
identical for both common use cases: an X2C-HF and X2C-KS-
DFT approach. Consequently, AMFI does not include a priori any
PCE correction on the SO splitting originating from amf two-
electron correlation effects, which should primarily have an impact
on the resulting splitting of the most strongly SO-split p shells. A
close inspection of the left (HF) and right (DFT/PBE) panels of
Fig. 1 reveals that the deviations from the 4DC reference for ΔSO

X (X
= 2p, 3p, 4p) are indeed systematically larger in the (correlated)
DFT/PBE case.

c. On the importance of two-electron scalar-relativistic PCE
corrections. In the previous paragraphs, we discussed the perfor-
mance of our newly proposed (e)amf PCE corrections for the X2C
Hamiltonian in either a HF or KS-DFT framework with particu-
lar focus on relative spinor energies of the superheavy diatomic
molecule Og2, that is, for example, on the resulting SO splittings
of inner- and outer-core atomic-like shells by comparison to the
corresponding 4DC reference data. In order to highlight the full
potential of our (e)amf PCE models, let us recall that our 2ePCE
correction models take into account both 2eSO and 2eSC correction
terms. Whereas 2eSO PCE corrections are common to include in an
(exact) two-component Hamiltonian framework for many-electron
systems,34,37,38,41 the inclusion of 2eSC-PCE correction terms is
less so, despite their apparent significance to be illustrated in the
following. To this end, we turn to a genuine spinfree SC frame-
work by eliminating all spin-dependent terms from the parent 4DC
Hamiltonian by means of the Dirac relation.33,92 Hence, the results
obtained on the basis of the SC-4DC Hamiltonian will serve as ref-
erences for the discussion of the numerical performance of various

PCE-corrected SC-X2C Hamiltonian models. For the ease of com-
parison with the above spin-dependent data, we consider in
Tables IV and V, respectively, in a spinfree ansatz the same
superheavy diatomic molecule Og2.

A close inspection of both tables first shows that the bare (no
PCE corrections) SC-1eX2CD and the SC-AMFIX2CD Hamiltoni-
ans yield within either computational model, viz. HF and DFT/PBE,
strictly matching numerical results. The reason is that with the
elimination of any spin-dependent term from the (parent) 4c Hamil-
tonian, the AMFI PCE corrections simply become zero. Moreover,
as could be expected, the largest 2eSC PCE corrections are encoun-
tered for the inner s shells (molecular spinors ϵ1−4 in Tables IV
and V) with deviations for SC-1eX2CD (≡ SC-AMFIX2CD) up to
27.2 Hartree in the HF and 35.3 Hartree in the DFT/PBE case
compared to the SC-4DC reference data. By moving to the outer-
core and up to occupied molecular spinors close to the Fermi level,
2eSC PCEs start to fade significantly with absolute deviations for
the HOMO and HOMO-1 amounting to less than 10−4 Hartree.
By contrast, our SC-(e)amfX2CDC models provide an even higher
numerical accuracy by at least one order of magnitude (<10−5

) for
all occupied molecular spinors summarized in Tables IV and V,
that is, ranging from the innermost s shells to the Fermi level. The
latter findings, therefore, unequivocally illustrate that our atomic
SC-(e)amfX2CDC PCE correction models are capable of efficiently
correcting for 2ePCEs in a molecular framework. Consequently, this
distinct asset of our (e)amfX2C models is a key ingredient for their
above discussed numerical success in a spin-dependent Hamiltonian
framework where 2eSC and 2eSO coupling contributions are both
simultaneously at play and should not be considered on a different
footing. In passing, we further note that also in the present spinfree
case, the total SCF energies obtained within either our (e)amfX2C
or a 4c Hamiltonian framework agree up to μ-Hartree accuracy,
regardless of the underlying SCF ansatz.

2. Open-shell Te2

In Sec. IV A 1, we primarily focused on the numerical assess-
ment of various 2ePCE corrections schemes for the X2C Hamil-
tonian in a many-electron context on the basis of the closed-shell
superheavy diatomic molecule Og2. In particular, we paid atten-
tion to the capability of various 2ePCE-corrected X2C models to
provide matching molecular spinor energies by comparison to four-
component reference data. In the chemistry of (molecular com-
pounds of) heavy and superheavy elements, one frequently has to
cope with partially occupied electronic shells due to the possibility
of unfilled s, p, d and/or f electronic shells. In order to showcase the
versatility of our (e)amf PCE corrections for the X2C Hamiltonian
also in such a context, we consider in the following the open-shell
molecule Te2. The latter system is a heavy homologue of O2 and,
for this reason, best characterized by a valence electronic structure
that can be written in shorthand as π4

uπ∗,2
g (assuming an approx-

imate yet more familiar spin–orbit-free notation of the molecular
spinors). For a more detailed discussion of the electronic structure
of the homonuclear diatomic systems of group 16 ranging from O2
to Po2, we refer the reader, for example, to Ref. 83. As shown in the
latter, the molecular bonding (πu) and antibonding (π∗g ) combina-
tions predominantly originate from the atomic p valence shells of
each Te atom. Hence, their actual description will be a sensitive mea-
sure of an appropriate account of both SC effects and SO coupling.

J. Chem. Phys. 157, 114106 (2022); doi: 10.1063/5.0095112 157, 114106-13

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE IV. SCF total energy (E) and orbital energies of selected doubly degenerate occupied orbitals (ϵ) for Og2 as obtained
from HF/v2z calculations within a scalar-relativistic (SC) four-component Dirac–Coulomb (4DC) as well as a two-component
Hamiltonian framework, including the new SC-(e)amfX2CDC models. All energies are given in Hartree.

SC-1eX2CD SC-AMFIX2CD SC-amfX2CDC SC-eamfX2CDC SC-4DC

E −109 086.488 92 −109 086.488 92 −109 171.759 16 −109 171.759 16 −109 171.759 17
ϵ1−2 −8263.961 72 −8263.961 72 −8291.155 82 −8291.155 82 −8291.155 82
ϵ3−4 −1738.628 22 −1738.628 22 −1743.946 21 −1743.946 21 −1743.946 21
ϵ5−10 −1263.678 16 −1263.678 16 −1264.709 96 −1264.709 96 −1264.709 96
ϵ11−12 −476.535 15 −476.535 15 −477.774 97 −477.774 97 −477.774 97
ϵ13−18 −350.213 16 −350.213 16 −350.499 58 −350.499 58 −350.499 58
ϵ19,−,28 −274.235 99 −274.235 99 −274.322 51 −274.322 50 −274.322 50
ϵ29,−,30 −142.642 44 −142.642 44 −142.988 85 −142.988 85 −142.988 85
ϵ31−36 −101.557 38 −101.557 38 −101.630 35 −101.630 35 −101.630 35
ϵ37−46 −72.823 70 −72.823 70 −72.836 82 −72.836 82 −72.836 82
ϵ47−60 −48.968 07 −48.968 07 −48.961 63 −48.961 63 −48.961 63
. . . . . . . . . . . . . . . . . .
ϵ110 −1.616 33 −1.616 33 −1.614 83 −1.614 82 −1.614 82
ϵ111 −1.311 32 −1.311 32 −1.315 93 −1.315 93 −1.315 93
ϵ112 −1.310 05 −1.310 05 −1.314 67 −1.314 67 −1.314 67
ϵ113 −0.414 45 −0.414 45 −0.414 35 −0.414 35 −0.414 35
ϵ114 −0.396 48 −0.396 48 −0.396 39 −0.396 39 −0.396 39
ϵ115 −0.396 48 −0.396 48 −0.396 39 −0.396 39 −0.396 39
ϵ116 −0.389 81 −0.389 81 −0.389 72 −0.389 72 −0.389 72
ϵ117 −0.389 81 −0.389 81 −0.389 72 −0.389 72 −0.389 72
ϵ118 −0.373 49 −0.373 49 −0.373 41 −0.373 41 −0.373 41

TABLE V. SCF total energy (E) and spinor energies of selected doubly degenerate occupied spinors (ϵ) for Og2 as obtained
from DFT/PBE/v2z calculations within a scalar-relativistic (SC) four-component Dirac–Coulomb (4DC) as well as a two-
component Hamiltonian framework, including the new SC-(e)amfX2CDC models. All energies are given in Hartree.

SC-1eX2CD SC-AMFIX2CD SC-amfX2CDC SC-eamfX2CDC SC-4DC

E −109 137.697 23 −109 137.697 23 −109 230.565 34 −109 230.565 35 −109 230.565 35
ϵ1−2 −8210.621 33 −8210.621 33 −8245.939 22 −8245.939 21 −8245.939 22
ϵ3−4 −1719.076 35 −1719.076 35 −1725.221 40 −1725.221 40 −1725.221 40
ϵ5−10 −1248.586 16 −1248.586 16 −1251.036 14 −1251.036 14 −1251.036 14
ϵ11−12 −466.816 28 −466.816 28 −468.191 09 −468.191 09 −468.191 09
ϵ13−18 −342.387 39 −342.387 39 −342.985 98 −342.985 98 −342.985 98
ϵ19,−,28 −267.997 53 −267.997 53 −268.224 50 −268.224 50 −268.224 50
ϵ29,−,30 −137.508 75 −137.508 75 −137.878 18 −137.878 17 −137.878 17
ϵ31−36 −97.302 11 −97.302 11 −97.451 28 −97.451 27 −97.451 27
ϵ37−46 −69.594 60 −69.594 60 −69.634 17 −69.634 15 −69.634 15
ϵ47−60 −46.686 30 −46.686 30 −46.682 01 −46.682 00 −46.682 00
. . . . . . . . . . . . . . . . . .
ϵ110 −1.297 93 −1.297 93 −1.296 19 −1.296 18 −1.296 18
ϵ111 −1.019 44 −1.019 44 −1.022 82 −1.022 81 −1.022 81
ϵ112 −1.018 77 −1.018 77 −1.022 15 −1.022 15 −1.022 15
ϵ113 −0.281 86 −0.281 86 −0.281 90 −0.281 90 −0.281 90
ϵ114 −0.268 43 −0.268 43 −0.268 51 −0.268 50 −0.268 50
ϵ115 −0.268 43 −0.268 43 −0.268 51 −0.268 50 −0.268 50
ϵ116 −0.263 31 −0.263 31 −0.263 39 −0.263 39 −0.263 39
ϵ117 −0.263 31 −0.263 31 −0.263 39 −0.263 39 −0.263 39
ϵ118 −0.251 40 −0.251 40 −0.251 51 −0.251 50 −0.251 50
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To this end, we will not only consider spin-same-orbit but also spin-
other-orbit interaction effects where the latter requires the inclusion
of the 2e Gaunt term in the many-body Dirac Hamiltonian.3,93

In Table VI, we start our assessment of molecular spinor
energies of Te2 obtained by means of AOC-HF calculations by com-
paring first data based on various 2ePCE corrections schemes for
the X2C Hamiltonian to 4c Dirac–Coulomb Hamiltonian reference
values. Notably, for the (closed) core electronic shells, we observe
for all 2c Hamiltonian schemes, similar trends as was the case for
Og2—with a reference-matching accuracy of our (e)amfX2C mod-
els better than 5 × 10−5 Hartree—which underlines the numerical
superiority of our newly proposed PCE correction schemes also
in an open-shell case. Moving next to the lower end of Table VI,
i.e., the (partially) occupied valence π (ϵ50,−,51) and π∗ (ϵ52−53)

shells, we first note that employing a bare 1eX2CD Hamiltonian
does not suffice to achieve sub-mHartree accuracy in the descrip-
tion of the spin–orbit-split mj components of the π(∗) shells, in
particular for the π∗1/2 − π∗3/2 shells (ϵ52 and ϵ53 in Table VI, respec-
tively). Notably, similar conclusions as for the AOC-HF data in
Table VI also hold for the Kramers-unrestricted HF data compiled
in Table VII. By contrast—as opposed to the superheavy diatomic
Og2—for the heavy Te2 diatomic system, the AMFIX2CD Hamil-
tonian yields results for the valence shells on par with the
(e)amfX2CDC Hamiltonian, both of which are, in turn, in excellent
agreement with the 4DC reference.

We note in passing that the excellent agreement in absolute val-
ues between AMFIX2CD-based data (encompassing spin-same and

spin-other-orbit PCE corrections) and the 4DCG reference deteri-
orates not only for the inner-core shells but also for the valence
π(∗) manifolds as shown in Table VIII. More importantly, though,
relative energy differences are, to a large extent, preserved in the
valence shells of Te2, which suggests that the AMFIX2CD model
could still be a viable option for a 2c Hamiltonian framework
when aiming for a study of valence-shell dominated molecu-
lar properties. Albeit the reasonable relative energy differences
in the latter case, achieving both accurate absolute and rela-
tive molecular spinor energies with respect to the 4DC as well
as 4DCG reference data simultaneously necessitates resorting to
our (e)amfX2C Hamiltonian models. As can be inferred from
Tables VI and VIII, both our amf 2ePCE correction models dis-
play for all electronic shells a numerical accuracy within at least
a few 10−5 Hartree (or better) in comparison to the respective
4c reference.

3. Methane—The ultrarelativistic case
In contrast to the previous molecular examples, methane (CH4)

consists of a “heavy” carbon atom C and four “light” hydrogen atoms
H. Particularly, since hydrogen is a one-electron system, it will not
give rise to atomic two-electron PCE correction terms. Hence, any
genuine atomic-mean-field-based PCE-corrected 2c Hamiltonian,
such as AMFIX2C or amfX2C, will, by construction, not include any
“light”-atom PCE corrections. By contrast, our extended amfX2C
approach allows us to eliminate this apparent shortcoming because,

TABLE VI. SCF total energy (E) and spinor energies (ϵ) of the doubly degenerate occupied and (partially occupied) open-
shell spinors for Te2 as obtained from AOC/HF/v2z calculations within a four-component Dirac–Coulomb (4DC) as well as a
two-component Hamiltonian framework, including the new (e)amfX2CDC models. All energies are given in Hartree.

1eX2CD AMFIX2CD amfX2CDC eamfX2CDC
4DC

E −13 584.541 93 −13 584.340 21 −13 587.741 21 −13 587.741 19 −13 587.741 74
ϵ1−2 −1174.973 31 −1174.977 84 −1176.015 76 −1176.015 76 −1176.015 72
ϵ3−4 −183.754 95 −183.756 45 −183.876 40 −183.876 40 −183.876 40
ϵ5−6 −172.035 41 −171.693 23 −171.763 85 −171.763 85 −171.763 85
ϵ7−8 −161.416 35 −161.570 69 −161.637 31 −161.637 30 −161.637 31
ϵ9,−,10 −161.416 20 −161.570 54 −161.637 16 −161.637 16 −161.637 16
ϵ11−12 −38.108 99 −38.109 52 −38.130 87 −38.130 86 −38.130 86
ϵ13−14 −33.171 92 −33.102 76 −33.113 02 −33.113 02 −33.113 02
ϵ15−16 −31.132 06 −31.163 70 −31.173 36 −31.173 35 −31.173 35
ϵ17−18 −31.130 92 −31.162 56 −31.172 22 −31.172 22 −31.172 22
ϵ19,−,20 −22.491 55 −22.431 46 −22.432 28 −22.432 28 −22.432 28
ϵ21−22 −22.489 93 −22.429 84 −22.430 65 −22.430 65 −22.430 65
ϵ23−24 −21.991 04 −22.030 63 −22.032 48 −22.032 47 −22.032 47
ϵ25−26 −21.990 31 −22.029 90 −22.031 75 −22.031 74 −22.031 74
ϵ27−28 −21.988 93 −22.028 52 −22.030 37 −22.030 38 −22.030 38
. . . . . . . . . . . . . . . . . .
ϵ47 −0.865 60 −0.865 65 −0.865 90 −0.865 90 −0.865 90
ϵ48 −0.703 08 −0.703 12 −0.703 48 −0.703 47 −0.703 47
ϵ49 −0.414 23 −0.413 90 −0.413 89 −0.413 89 −0.413 89
ϵ50 −0.365 88 −0.365 17 −0.365 14 −0.365 13 −0.365 13
ϵ51 −0.343 37 −0.343 89 −0.343 86 −0.343 87 −0.343 87
ϵ52 −0.260 21 −0.259 90 −0.259 90 −0.259 90 −0.259 90
ϵ53 −0.239 43 −0.240 03 −0.240 03 −0.240 03 −0.240 03
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TABLE VII. SCF total energy (E) and spinor energies (ϵ) of occupied spinors for Te2 as obtained from Kramers-unrestricted
HF/v2z calculations within a four-component Dirac–Coulomb (4DC) as well as a two-component Hamiltonian framework,
including the new (e)amfX2CDC models. All energies are given in Hartree.

1eX2CD amfX2CDC eamfX2CDC
4DC

E −13 584.660 07 −13 587.858 59 −13 587.858 62 −13 587.859 37
ϵ1−2 −1174.972 17 −1176.014 50 −1176.014 50 −1176.014 66

−1174.969 88 −1176.012 19 −1176.012 19 −1176.012 43
ϵ3−4 −183.752 81 −183.874 41 −183.874 41 −183.874 42

−183.752 00 −183.873 60 −183.873 60 −183.873 62
ϵ5−6 −172.033 33 −171.761 93 −171.761 92 −171.761 92

−172.033 07 −171.761 67 −171.761 66 −171.761 67
ϵ7−8 −161.414 72 −161.635 82 −161.635 81 −161.635 82

−161.414 62 −161.635 72 −161.635 71 −161.635 72
ϵ9,−,10 −161.412 62 −161.633 73 −161.633 73 −161.633 76

−161.412 59 −161.633 70 −161.633 70 −161.633 73
ϵ11−12 −38.107 49 −38.129 53 −38.129 53 −38.129 53

−38.104 95 −38.126 98 −38.126 98 −38.126 98
ϵ13−14 −33.169 88 −33.111 13 −33.111 13 −33.111 13

−33.169 37 −33.110 64 −33.110 63 −33.110 64
ϵ15−16 −31.130 53 −31.171 99 −31.171 99 −31.171 99

−31.130 50 −31.171 95 −31.171 95 −31.171 95
ϵ17−18 −31.126 56 −31.168 03 −31.168 03 −31.168 04

−31.126 52 −31.168 00 −31.168 00 −31.168 00
ϵ19,−,20 −22.488 91 −22.429 80 −22.429 80 −22.429 80

−22.488 70 −22.429 58 −22.429 58 −22.429 58
ϵ21−22 −22.487 51 −22.428 39 −22.428 38 −22.428 39

−22.487 48 −22.428 36 −22.428 35 −22.428 36
ϵ23−24 −21.988 41 −22.030 01 −22.030 00 −22.030 01

−21.988 19 −22.029 79 −22.029 78 −22.029 78
. . . . . . . . . . . . . . .
ϵ99 −0.418 95 −0.418 81 −0.418 81 −0.418 80
ϵ100 −0.397 75 −0.397 42 −0.397 42 −0.397 42
ϵ101 −0.323 64 −0.323 79 −0.323 79 −0.323 79
ϵ102 −0.321 15 −0.321 51 −0.321 51 −0.321 51
ϵ103 −0.317 81 −0.317 69 −0.317 69 −0.317 69
ϵ104 −0.315 21 −0.315 27 −0.315 28 −0.315 28

as detailed in Sec. II C and outlined in lines 14–23 of Algorithm 2, all
PCE correction terms for HF and DFT, respectively, are derived in
molecular basis on the basis of molecular densities, D4c

⊕ and D2c
⊕ , built

from a superposition of atomic input densities. Consequently, the
essential molecular densities include atomic contributions regard-
less of the actual atom type, that is, both “light” (one-electron) and
“heavy” (many-electron) atoms contribute equally.

Bearing the latter in mind, the total SCF energies as well as
spinor energies compiled in Table IX for an ultrarelativistic CH4
with the speed of light c scaled down by a factor 10 confirm
the unique numerical performance of the eamfX2CDC Hamilto-
nian model in comparison to the 4DC reference data. Only in
the eamfX2CDC case (column four, Table IX), we find that not
only the total energy E agrees to better than mHartree accuracy
but also the spinor energies exhibit consistent numerical accuracy
for the innermost non-bonding core C 1s as well as the bonding,
valence C–H spinors. Notably, the amfX2CDC and the AMFIX2CD

models feature an inconsistent numerical performance with respect
to both quantities: amfX2CDC yields a total energy E and spinor
energies for the (carbon-centered) inner-core spinors ϵ1 and ϵ2,
respectively, of the ultrarelativistic CH4, which are in close agree-
ment with the 4DC reference. It shows, however, larger deviations
for the valence spinors (ϵ3−5) whereas the opposite conclusions
apply to the AMFIX2CD-based data. In the latter case, we ascribe the
seemingly good performance of the AMFIX2CD Hamiltonian with
errors less than a mHartree in comparison to the 4DC reference
to a fortuitous error cancellation since the amf-based AMFI PCE
correction scheme cannot take into account any 2e picture-change
correction that involves contributions from the atomic hydrogen
centers.

B. Contact densities of copernicium fluorides CnFn

In this section, we assess the accuracy of calculating absolute
contact densities as well as the potential to provide reliable relative
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TABLE VIII. SCF total energy (E) and spinor energies (ϵ) of the doubly degenerate occupied and open-shell spinors
for Te2 as obtained from AOC/HF/v2z calculations within a four-component Dirac–Coulomb–Gaunt (4DCG) as well as a
two-component Hamiltonian framework, including the new (e)amfX2CDCG models. All energies are given in Hartree.

1eX2CD AMFIX2CD amfX2CDCG eamfX2CDCG
4DCG

E −13 584.541 93 −13 584.254 57 −13 576.460 87 −13 576.460 83 −13 576.457 40
ϵ1−2 −1174.973 31 −1174.980 60 −1173.197 96 −1173.197 96 −1173.197 89
ϵ3−4 −183.754 95 −183.757 37 −183.615 71 −183.615 71 −183.615 70
ϵ5−6 −172.035 41 −171.613 03 −171.294 09 −171.294 09 −171.294 08
ϵ7−8 −161.416 35 −161.603 82 −161.302 79 −161.302 79 −161.302 80
ϵ9,−,10 −161.416 20 −161.603 66 −161.302 63 −161.302 64 −161.302 63
ϵ11−12 −38.108 99 −38.109 82 −38.094 68 −38.094 68 −38.094 68
ϵ13−14 −33.171 92 −33.086 83 −33.041 33 −33.041 33 −33.041 33
ϵ15−16 −31.132 06 −31.170 31 −31.127 09 −31.127 08 −31.127 09
ϵ17−18 −31.130 92 −31.169 16 −31.125 94 −31.125 95 −31.125 95
ϵ19,−,20 −22.491 55 −22.425 20 −22.412 06 −22.412 06 −22.412 06
ϵ21−22 −22.489 93 −22.423 58 −22.410 44 −22.410 44 −22.410 44
ϵ23−24 −21.991 04 −22.035 03 −22.023 48 −22.023 47 −22.023 47
ϵ25−26 −21.990 31 −22.034 30 −22.022 75 −22.022 75 −22.022 75
ϵ27−28 −21.988 93 −22.032 93 −22.021 38 −22.021 39 −22.021 39
. . . . . . . . . . . . . . . . . .
ϵ47 −0.865 60 −0.865 67 −0.865 83 −0.865 82 −0.865 82
ϵ48 −0.703 08 −0.703 13 −0.703 23 −0.703 22 −0.703 22
ϵ49 −0.414 23 −0.413 82 −0.413 60 −0.413 59 −0.413 60
ϵ50 −0.365 88 −0.365 01 −0.364 80 −0.364 79 −0.364 79
ϵ51 −0.343 37 −0.344 00 −0.343 82 −0.343 83 −0.343 83
ϵ52 −0.260 21 −0.259 83 −0.259 52 −0.259 53 −0.259 53
ϵ53 −0.239 43 −0.240 16 −0.239 87 −0.239 87 −0.239 87

contact density shifts computed within PCE-corrected X2C Hamil-
tonian models by comparing to parent 4c reference data. While
absolute contact densities are dominated by contributions of the
inner s-shells, and to a lesser extent the innermost p1/2-shells, of the
respective nuclear center of interest, contact density shifts particu-
larly probe subtle differences of the valence electronic structure and,
likewise, polarization of the inner electronic shells, both of which
originate from the chemical bonding between a reference atom, here
the Cn atom, and ligand atoms (or molecules), as for example, the n
fluorine atoms in the CnFn compounds studied in the present work.
The optimized structures of the CnFn (n = 2, 4, 6) compounds along
with the corresponding spatial symmetries are shown in Table X.

Considering the limited basis-set size and point nucleus approx-
imation in the present work, our optimized Cn–F bond lengths
rCn−F compare reasonably with corresponding benchmark data from
a very recent work by Hu and Zou85 who reported X2C/PBE0-
optimized bond lengths rCn−F of 1.920, 1.927, and 1.933 Å
with an increasing number n of fluorine ligand atoms.

Table XI summarizes the calculated absolute contact densi-
ties as well as density shifts in a spin-dependent (upper panel) and
scalar-relativistic (spinfree, lower panel) framework. As can be seen
there, by construction, we find for the bare Cn atom to be a perfect
match for the absolute contact density at the Cn nucleus between
our (e)amfX2CDC PCE-corrected 2c calculations (Table XI, entries 4

TABLE IX. SCF total energy (E) and spinor energies (ϵ) of the doubly degenerate occupied spinors for CH4 as obtained from DFT/PBE/v2z calculations within a four-
component Dirac–Coulomb (4DC) as well as a two-component Hamiltonian framework, including the new (e)amfX2CDC models. All energies are given in Hartree. The speed of
light c was reduced by a factor 10.

1eX2CD AMFIX2CD amfX2CDC eamfX2CDC
4DC

E −42.142 20 −42.140 39 −42.264 69 −42.257 74 −42.258 50
ϵ1 −10.222 06 −10.224 01 −10.361 54 −10.360 28 −10.357 94
ϵ2 −0.659 39 −0.659 66 −0.662 88 −0.662 69 −0.662 74
ϵ3 −0.357 05 −0.352 88 −0.356 49 −0.352 91 −0.352 90
ϵ4−5 −0.333 13 −0.335 03 −0.332 82 −0.335 27 −0.335 44
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TABLE X. Four-component DFT/PBE0-optimized structures of CnFn (n = 2, 4, 6)
compounds. For computational details, see text. All internuclear distances rCn−F are
given in Å.

Molecule rCn−F Double group symmetry

CnF2 1.937 D∗∞h
CnF4 1.942 C∗4h
CnF6 1.948 O∗h

and 5) and the corresponding 4c reference, irrespective of the inclu-
sion of spin-dependent terms. By contrast, discarding any 2ePCE
correction (1eX2CD, entry 2) or including only first-order SO mean-
field PCE corrections (AMFIX2CD, entry 3) leads to a considerable
underestimation of the total contact density. Interestingly, in the
AMFIX2CD case, the total contact density is even smaller than in
the 1eX2CD case and, consequently, in even stronger disagreement
with the 4c reference. Moving next to the difluoride compound,
the conclusions surprisingly seem to shift. While all 2c models cor-
rectly reproduce the trend of a decrease in the contact density at
the Cn nucleus, AMFIX2CD (923.43 e/a3

0, spinfree: 1225.51 e/a3
0)

now exhibits the best agreement for the contact density shift with
the (sc-)4DC reference of 922.84 e/a3

0 (1226.40 e/a3
0). Considering

the remaining tetra- and hexafluoride compounds in Table XI, the
agreement of AMFIX2CD for Δρ with the 4c references considerably
worsens with an increasing number of fluorine ligands. This leads us
to conclude that the almost perfect match in Δρ observed for CnF2 is
likely due to a fortuitous error cancellation.

What about the (e)amfX2C models? For CnF2, a decompo-
sition of the total contact density at the Cn nucleus in terms
of molecular spinor contributions reveals that calculations based

on the (e)amfX2CDC Hamiltonian predict in the spin-dependent
case—with similar conclusions holding for the spinfree case—a
major contribution of the Cn 1s shell (vide supra) of −43 605 705.12
e/a3

0 (−43 605 705.33 e/a3
0) in contrast to the 4c value of −43 605

699.65 e/a3
0. Hence, recalling the exact numerical match within sig-

nificant digits for the bare Cn atom (see Table XI, first row), the
major source for the difference in the total Δρ for CnF2 pre-
dominantly traces back to a Δρ1s ≈ 5.5 e/a3

0 between our 2c
(e)amfX2CDC and the 4DC data. Moreover, it is precisely for
this innermost electronic shell that the molecular spinor ener-
gies ϵ1s exhibit deviations between (e)amfX2C and 4DC on the
order of +3 × 10−4 Hartree. In detail, we obtain in both 2c cases
ϵamfX2CDC

1s = −7117.032 93, Hartree and ϵeamfX2CDC
1s = −7117.032 94

Hartree, respectively, underlining the obvious close relation-
ship of the two approaches, which have to be compared with
ϵ

4DC
1s = −7117.032 60 Hartree. Despite the slightly increasing dis-

crepancies in Δρ observed for the remaining polyatomic fluoride
compounds of Cn listed in Table XI, which can be explained along
the same lines as for the difluoride CnF2 compound, our (e)amfX2C
models still perform best in a systematic fashion with respect to
the four-component references. Notably, these encouraging findings
hold for both common-use cases, with the inclusion of SO interac-
tion and in a genuine spinfree approach. In summary, probing the
density at a heavy nucleus constitutes an excellent measure of the
importance of 2e interaction contributions and, hence, allows us to
uniquely reveal even subtle shortcomings of distinct 2ePCE correc-
tion models within the X2C Hamiltonian framework by comparing
to the corresponding full 4c reference data.

C. X-ray core-ionization energies
Finally, we compare the performance and reliability of the

1eX2C, AMFIX2C as well as (e)amfX2C 2c Hamiltonian models

TABLE XI. Contact densities ρ and contact density shifts Δρ evaluated at the Cn nucleus for the Cn atom and different Cn fluoride compounds. All data were obtained from
scalar-relativistic + spin–orbit (upper panel) and scalar-relativistic-only spinfree (lower panel) HF wave functions. For the two-component X2C Hamiltonian, different two-electron
picture-change effect corrections were employed, including the new (e)amfX2CDC models. All densities are given in e/a3

0.

Compound 1eX2CD AMFIX2CD amfX2CDC eamfX2CDC
4DC

Cn −58 697 556.08 −58 661 390.26 −58 977 494.39 −58 977 494.39 −58 977 494.39
CnF2 −58 696 660.51 −58 660 466.83 −58 976 578.21 −58 976 577.94 −58 976 571.54
CnF4 −58 695 900.03 −58 659 721.50 −58 975 824.80 −58 975 823.87 −589 75 812.06
CnF6 −586 95 683.21 −58 659 514.86 −58 975 609.89 −58 975 608.50 −589 75 593.75
Δρ(CnF2−Cn) 895.57 923.43 916.18 916.45 922.84
Δρ(CnF4−Cn) 1656.05 1668.76 1669.58 1670.52 1682.33
Δρ(CnF6−Cn) 1872.88 1875.40 1884.50 1885.89 1900.64

Spinfree

Cn −56 251 080.53 −56 251 080.53 −56 571 626.66 −56 571 626.66 −565 71 626.66
CnF2 −56 249 855.02 −56 249 855.02 −56 570 406.42 −56 570 405.90 −56 570 400.26
CnF4 −56 249 040.54 −56 249 040.54 −56 569 579.69 −56 569 578.93 −56 569 569.39
CnF6 −56 248 766.28 −56 248 766.28 −56 569 295.28 −56 569 294.35 −56 569 283.33
Δρ(CnF2−Cn) 1225.51 1225.51 1219.24 1220.79 1226.40
Δρ(CnF4−Cn) 2039.99 2039.99 2046.97 2047.73 2057.27
Δρ(CnF6−Cn) 2314.25 2314.25 2331.38 2332.31 2343.33
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for the calculation of x-ray core-ionization energies by comparing
to corresponding mmfX2C reference values. With the advent and
general accessibility of new, powerful x-ray radiation sources, such
as free-electron lasers94 (see, for example, Ref. 95 for an overview
of available facilities), experimental x-ray spectroscopy has wit-
nessed in the past decade a continuous, rapid advance and enhanced
applicability to study not only the electronic structure but also the
dynamics of molecules and materials.96–98 In order to keep pace
with the experimental progress and be able to provide a much
welcomed highly accurate theoretical support, computational x-ray
spectroscopy has experienced tremendous progress in recent years.99

Here, a genuine inclusion of relativistic effects is nothing but a basic
requirement since the inner-core shells are most prone to quanti-
tative changes due to relativity. For example, while K-edge x-ray
spectroscopy probes the chemical nature of the 1s1/2 shell of a given
center and, hence, necessitates, in particular, a proper account of SC
contributions, studying the L-edge and M-edge of (late) transition-
metal, p-block and, perhaps most importantly, f -elements,100 whose
fine-structure is dominated by the SO splitting of the 2p- and 3p- and
3d-shells, respectively, requires a suitable framework to efficiently
take into account the SO interaction. The latter two requirements
are easily met in either a (exact) 2c or full 4c framework that sets
out from a many-particle Dirac–Coulomb(–Gaunt/Breit) Hamilto-
nian. For further details and recent advances of genuine relativistic
quantum-chemical x-ray spectroscopy approaches that illustrate in
a striking fashion the potential of such ansätze, we refer the reader,
for example, to Refs. 89 and 101–104.

Considering common applications in x-ray spectroscopy, we
highlight in Table XII and XIII the importance of 2ePCE corrections
to the X2C Hamiltonian, which we may anticipate, based on all find-
ings discussed in the previous sections (vide supra), to be most pro-
nounced for the K- up to M-edges of heavy- and superheavy nuclei.
Starting with the EOM-CCSD core-ionization potentials of the
heavy p-block anion At− compiled in Table XII, we note that the K-
edge ionization potentials within both the 1eX2CD and AMFIX2CD
Hamiltonian frameworks deviate more than 5 Hartree (sic!) from
the mmfX2CDC reference. Concerning the use of the latter, it was
shown in Ref. 89 that making use of this 2c Hamiltonian scheme
yields ionization potentials that are virtually indistinguishable from
the parent 4DC data and this is indeed confirmed by the present
calculations. Moving to our (e)amfX2C PCE-corrected Hamiltonian
framework, we observe an agreement with the mmfX2CDC data of
sub-mHartree accuracy not only for the K-edge but also for the L1-

as well as L2,3-edges. The resulting deviation of 47 cm−1 from the ref-
erence data for the SO splitting ΔSO

L−edge (fifth row, Table XII), which
ultimately governs the fine-structure of the L2,3-edges, approaches
almost spectroscopic accuracy of 1 cm−1.105 By contrast, the error for
ΔSO

L−edge in the case of employing, for example, the hitherto popular
AMFIX2CD Hamiltonian is as large as 21 600 cm−1 (corresponding
to an error that is 60 times (sic!) larger than the error bar for chemical
accuracy).

Table XIII compiles core-ionization potential data for two
representative molecular 5d (upper panel) and 6d (lower panel)
complexes as obtained from EOM-CCSD calculations. As was the
case for the At− anion, we consider the numerical performance of
different atomic mean-field 2ePCE-correction schemes for the X2C
Hamiltonian by comparing to results calculated within a molecular
mean-field 2c framework (Table XIII, entry 6). In passing, we note

that for the [Au]-complex (upper panel of Table XIII), we were
not able to obtain a converged SCF solution for Au within the
external SCF program RELSCF106 that constitutes the basis for the
AMFI module within DIRAC, and this is unfortunately a recur-
ring problem. Considering first the full neglect of 2ePCE corrections
within the 1eX2CD framework (Table XIII, entry 2), a similar pic-
ture emerges in both molecular cases as in the single-ion case.
The absolute deviations for the ionization potentials of all K- to
M-edges are substantial. Moreover, the same conclusions hold for
relative deviations, exemplified by the SO splittings ΔSO

L−edge of the
L-edge. Hence, these findings unequivocally demonstrate also in
the context of x-ray spectroscopic quantities that 2ePCEs are sub-
stantial when probing molecular properties of the inner-core shells.
Interestingly, though, the ligand-field induced splittings of the M4,5-
edges in the case of the [Au]-complex can be correctly reproduced
within the 1eX2CD Hamiltonian framework. As can be seen for the
CnF2 complex, the inclusion of first-order mean-field SO PCE cor-
rections (entry 3, Table XIII) within the AMFIX2CD Hamiltonian
leads to a reduction of the error for ΔSO

L−edge by one order of mag-
nitude from ΔΔSO

L−edge ≈ +8.7 Hartree (1eX2CD) to ΔΔSO
L−edge ≈ −0.7

Hartree. Still, the underlying absolute core-ionization potentials for
the K- and L-edges exhibit a clear deviation ranging from ∼1.2
Hartree for the L3-edge to more than 17 Hartree for the K-edge in
comparison to the mmfX2CDC data.

By contrast, the EOM-CCSD core-ionization potentials calcu-
lated within the (e)amfX2CDC Hamiltonian frameworks (entries 4
and 5 in Table XIII) stand out also in the molecular cases due to

TABLE XII. EOM-CCSD/dyall.acv3z core-ionization energies of the At− anion obtained within a two-component Hamiltonian framework employing different corrections for
two-electron picture-change effects. Note that for At− amfX2CDC and eamfX2CDC yield identical results. All energies are given in Hartree.

Ionization 1eX2CD AMFIX2CD amfX2CDC amfX2CDC
a mmfX2CDC

b

K-edge 3532.8949 3532.9393 3538.2640 3538.2642 3538.2639
L1-edge 644.5913 644.6059 645.4290 645.4290 645.4290
L2-edge 620.8625 618.7619 619.2730 619.2730 619.2728
L3-edge 522.5137 523.2968 523.7092 523.7092 523.7092
ΔSO

L 98.3488 95.4651 95.5638 95.5638 95.5636
aamf corrections calculated for a neutral at atom.
bmmfX2CDC ≡

2DCm values taken from Ref. 89.
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TABLE XIII. EOM-CCSD/v2z core-ionization energies of the molecular compounds [Au(Cl)4]
− and CnF6 obtained within a two-component Hamiltonian framework employing

different corrections for two-electron picture-change effects, including the new (e)amfX2CDC models. All energies are given in Hartree.

Ionization 1eX2CD AMFIX2CD amfX2CDC eamfX2CDC mmfX2CDC
4DC

[AuCl4]−

K-edge 2982.8305 n/a 2986.9702 2986.9702 2986.9702 2986.9705
L1-edge 531.1267 n/a 531.7386 531.7387 531.7386 531.7387
L2-edge 509.7823 n/a 508.5810 508.5810 508.5809 508.5808
L3-edge 440.0794 n/a 441.0060 441.0061 441.0060 441.0064

440.0792 n/a 441.0058 441.0058 441.0058 441.0061
M4-edge 85.6431 n/a 85.3486 85.3487 85.3486 85.3485

85.6414 n/a 85.3471 85.3471 85.3471 85.3470
M5-edge 81.9117 n/a 82.1323 82.1323 82.1322 82.1325

81.9097 n/a 82.1302 82.1303 82.1302 82.1305
81.9082 n/a 82.1290 82.1290 82.1290 82.1292

aΔSO
L−edge 69.7030 n/a 67.5751 67.5751 67.5750 67.5745

ΔΔSO
L−edge 2.1280 n/a 0.0001 0.0001 0 ⋅ ⋅ ⋅

CnF6

K-edge 7098.8642 7099.0856 7116.4597 7116.4597 7116.4590 7116.4585
L1-edge 1450.8351 1450.9066 1454.3983 1454.3984 1454.3979 1454.3983
L2-edge 1412.3308 1404.9511 1406.9201 1406.9201 1406.9198 1406.9194
L3-edge 1003.1544 1005.1986 1006.4395 1006.4396 1006.4393 1006.4401
ΔSO

L−edge 409.1763 399.7525 400.4806 400.4806 400.4804 400.4793
ΔΔSO

L−edge 8.6959 −0.7279 0.0002 0.0002 0 ⋅ ⋅ ⋅

aCalculated as ΔSO(L2-L̄3) using an arithmetic mean value for the L3-edge.

two distinct, appealing features: (i) the absolute ionization ener-
gies for all edges feature numerical values below sub-mHartree
accuracy; (ii) as a result, this accuracy carries over to relative
data such as the SO splitting of the L2,3-edge and the ligand-
field fine-structure splitting of the M4,5-edges in the [Au]-complex.
Hence, the atomic-mean-field (e)amfX2C Hamiltonian models can
be regarded as a conceptually different alternative to the molecular
mean-field 2DC scheme by providing virtually the same numer-
ical accuracy for core- and likewise valence molecular properties
at a fraction of the computational effort. To stress the latter, we
recall that the mmfX2CDC approach requires to first find a con-
verged molecular 4c SCF solution whereas our (e)amfX2C mod-
els are solely built on quantities obtained from atomic 4c SCF
calculations. In the latter case, the SCF step is then carried out
exclusively in a molecular 2c framework. Moreover, we note that,
although the extended amfX2C Hamiltonian model requires the
calculation of a single 2e Fock matrix F4c,2e

[D4c
⊕] in a molecular four-

component framework, an efficient density-matrix-based screening
will significantly reduce the associated computational cost because
of the sparsity of the atom-wise blocked 4c molecular density
matrix D4c

⊕ .
Besides the calculation of core binding energies within a 2c

Hamiltonian framework taking into account various PCE correction
models, we performed 4DC-based EOM-CCSD calculation for the
[Au]-complex as well as CnF6 (Table XIII, entry 7). This enables
us to further assess the influence of the Hamiltonian on the core
ionizations, in particular inherent PCEs in the electron–electron

interaction within a two-component X2C framework, regardless of
an mmf or amf model to account for PCEs. As discussed in detail by
Halbert et al. in Ref. 89 in the context of x-ray core binding ener-
gies, even for mmfX2CDC, which is based on the transformation

FIG. 2. Absolute MP2 and CCSD correlation energy differences between 4DC
(∣ΔEc∣, in eV), for different Hamiltonians calculated for CnF6 with the same compu-
tational setup as for the EOM-CCSD core-ionization energies. Note that the scale
on the y axis is logarithmic. Further computational details are given in the text.
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TABLE XIV. EOM-CCSD/v2z core-ionization energies of CnF6 including contributions from the two-electron Gaunt interaction obtained within a two-component Hamiltonian
framework employing different corrections for two-electron picture-change effects, including the new (e)amfX2CDCG models. All energies are given in Hartree.

Ionization 1eX2CD AMFIX2CD amfX2CDCG eamfX2CDCG mmfX2CDCG

K-edge 7098.864 222 757 124 7099.244 902 278 329 7076.503 732 188 685 7076.503 830 421 792 7076.501 403 453 378
L1-edge 1450.835 145 507 292 1450.960 331 295 658 1448.800 870 735 362 1448.800 972 562 912 1448.800 310 220 434
L2-edge 1412.330 779 914 150 1402.780 910 028 746 1397.811 070 079 591 1397.811 170 997 760 1397.810 400 069 455
L3-edge 1003.154 441 459 877 1005.551 885 385 839 1001.540 331 728 849 1001.540 433 936 657 1001.540 508 582 275
ΔSO

L−edge 409.176 338 454 273 04 397.229 024 642 906 9 396.270 738 350 742 396.270 737 061 103 396.269 891 487 179 96
ΔΔSO

L−edge 12.906 446 967 093 075 0.959 133 155 726 931 4 0.000 846 863 562 060 207 2 0.000 845 573 923 015 763 3 0

into a 2c framework with respect to a decoupling of the (converged)
Fock matrix, leaving the 2e operator untransformed32 necessarily
introduces a PCE in the electron–electron interaction. Hence, the
latter becomes most prominent for molecular properties that neces-
sitate an accurate treatment of core–core and core–valence electron
correlation such as x-ray core-ionization potentials. Consequently,
albeit our limited correlation treatment in the EOM-CCSD step
(see Sec. III for further details), we already find small discrepan-
cies for the K- and L-edge ionization energies between mmfX2CDC
and 4DC on the order of 0.0025 eV and, similarly, for (e)amfX2C
and 4DC with differences up to 0.0035 eV in the case of CnF6 while
the deviations in the binding energies for the corresponding edges
are smaller for the [Au]-complex because of the “lighter” Au cen-
tral atom. As larger deviations—though still less than 0.01% of the
total K-edge binding energy—had been observed in a corresponding
comparison for astatine,89 we expect also for CnF6 (and, similarly,
for the [Au]-complex) a further increase of the deviations between
4DC and (e)amfX2CDC as well as mmfX2CDC upon an improved
electron correlation treatment. In passing, we note, though, the
excellent performance of our extended amfX2C-based computa-
tional model (red error bars in Fig. 2) with respect to the mmfX2CDC
model (purple error bars in Fig. 2), which are nearly identical for
both MP2 and CCSD correlation energies even on a logarithmic
scale in the case of CnF6. By contrast, turning to 1eX2CD and
AMFIX2CD, respectively, we either find stark differences in the cor-
relation errors between the MP2 and CCSD approaches (1eX2CD)
or, even within this limited correlation space, considerable errors
in the correlation energies within AMFIX2CD by comparison to
the ones obtained within a 4DC framework. Taking together, these
findings yet again underline the suitability and superiority of our
amfX2C Hamiltonian models, in particular its extended variant, in
the realm of an X2C framework for studying x-ray core binding
energies of atoms and molecules comprising heavy and superheavy
elements.

Finally, Table XIV compiles x-ray EOM-CSCD core binding
energies of CnF6 with the inclusion of the 2e Gaunt interaction.
This allows us to highlight the significance of the Gaunt interaction
(as part of the full Breit interaction) for an accurate description of
the inner-core edges of (super)heavy elements by comparing to the
corresponding Coulomb-type-interaction only data shown above in
Table XIII. Note that we do not have 4DCG data at hand since the
transformation of Gaunt-type AO integrals to MO basis is currently
implemented neither in DIRAC nor in RESPECT. In addition, as

discussed for Te2 in Sec. IV A 2, 1eX2CD does not allow to take into
account contributions from the Gaunt interaction and will not be
considered further below.

In agreement with what has been concluded in Ref. 89 for
astatide, we find for the (e)amfX2CDCG as well as mmfX2CDCG mod-
els (Table XIV, entries 4–6) a distinct effect arising from the Gaunt
interaction. As a result, core binding energies are substantially low-
ered by nearly 40 Hartree [≈ 1.1 keV (!)] in the case of the K-edge and
by up to 9 Hartree for the L-edge, respectively. Moreover, we also
observe a considerable decrease in the SO splitting of the L2,3-edge
ΔSO

L−edge by ∼115 eV, which is very well captured (ΔΔSO
L−edge ≈ 0.02 eV)

by our (e)amfX2CDCG models in comparison to mmfX2CDCG. The
latter is in sharp contrast to the AMFIX2CD model (entry 3), which
not only exhibits significant numerical differences in terms of abso-
lute core binding energies of more than 600 eV for the K-edge but
also shows a quantitative error ΔΔSO

L−edge of more than 25 eV for the
L2,3-edge fine-structure splitting.

V. CONCLUSIONS AND OUTLOOK

In this article, we have presented the motivation for and deriva-
tion of two distinct, atomic-mean-field (amf) approaches to account
on an equal footing for two-electron (2e) scalar-relativistic and
spin–orbit picture-change effects (PCEs) arising within an exact-
two-component (X2C) Hamiltonian framework. Both approaches,
dubbed amfX2C and extended amf (eamfX2C), have been imple-
mented independently in the DIRAC5 and RESPECT6 programs.
These implementations, which exploit—where available—atomic
supersymmetry in the atomic self-consistent field steps,5 open up
possibilities for the calculation of two-electron picture-change effect
corrections for all spin-dependent and spinfree four-component-
based Hamiltonians available in the two quantum-chemical software
packages.

Notably, we have shown that it is possible to uniquely tailor
our amf 2ePCE corrections for the X2C Hamiltonian to the under-
lying classes of self-consistent field (SCF) ansätze: Hartree–Fock
(HF) or density functional theory (DFT). Such a particular feature
has, to the best of our knowledge, so far not been considered for
any 2ePCE correction scheme in the literature. Moreover, by con-
trast to, for example, the recently proposed SOX2CAMF model,34

our new PCE correction schemes for the X2C Hamiltonian take
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into account both spin-independent—that is, scalar-relativistic—and
spin-dependent—that is, spin–spin (arising from the Gaunt term93)
as well as spin–orbit—contributions of the two-electron interaction.
Perhaps most importantly, we also argue why the eamfX2C Hamil-
tonian can be employed in genuine two-component solid-state SCF
calculations under consideration of periodic boundary conditions
starting from an appropriate four-component framework.107 The
latter is subject of ongoing work in our laboratories.

The novel (e)amfX2C models are readily available for genuine
two-component atomic and molecular SCF calculations including
both HF and DFT. As these, then, often constitute the basis for more
elaborate approaches such as (real-time) time-dependent ansätze
as well as response-theory-based approaches and post-HF elec-
tron correlation approaches, in general, for example, configuration-
interaction- or coupled-cluster-type wave function expansions, our
(e)amfX2C models are broadly applicable within a two-component
quantum-chemical framework.

As a first demonstration of the capabilities of the (e)amfX2C
models, we have applied them to the calculation of molecular
spinor energies of representative closed and open-shell (super)heavy
homonuclear diatomic molecules of group 16 and 18, respectively,
both within an HF and a DFT-based SCF ansatz. With these systems,
viz., Te2 and Og2, we have assessed the numerical accuracy of the
(e)amfX2C Hamiltonian models by comparing to four-component
reference data with respect to the ability to reproduce absolute
spinor energies as well as relative energies defined as the atomic-
like spin–orbit splittings of the inner-core shells. As a further test,
we have calculated both the absolute contact density at the Cn
nucleus and contact density shifts in copernicium fluoride com-
pounds (CnFn, n = 2, 4, 6) relative to the atomic value for the bare Cn
atom. Finally, we have studied the performance of our (e)amfX2C
Hamiltonian models for core-electron binding energies in the realm
of x-ray spectroscopy by making use of an equation-of-motion
coupled-cluster approach.

For the open- and closed-shell diatomic molecules, we demon-
strate that by applying our (e)amf PCE corrections to the X2C
Hamiltonian models, it is possible to match all corresponding four-
component molecular spinor energies with μ-Hartree accuracy, viz.
for inner-core to outer-valence electronic shells. This outstanding
performance holds not only for two-component SCF calculations
within a Kramers-restricted and Kramers-unrestricted HF ansatz
but also within a DFT framework. Moreover, we show that scalar-
relativistic two-electron PCE corrections are of utmost importance
for a reliable description of core electronic shells within a two-
component X2C Hamiltonian framework. The latter necessity mani-
fests itself also in the calculation of absolute as well as relative contact
densities at the Cn nucleus with respect to CnFn (n = 0, 2, 4, 6) com-
pounds, where their neglect can lead to sizable discrepancies with
respect to the same quantities obtained within a four-component
framework. Although the (e)amf corrections are able to eliminate a
substantial part of the scalar-relativistic and spin–orbit two-electron
PCEs in the X2C framework, qualitative discrepancies between our
two- and four-component results remain. We could trace the miss-
ing gap to the 4DC reference data for the absolute contact density at
the Cn nucleus in CnF2 and, similarly, for the other CnFn (n > 2)
compounds, to a contact density contribution of the Cn 1s shell
whose contributions show a relative deviation of about 11% between
two- and four-component data.

Furthermore, in a comparison of x-ray core binding energies
for At−, [AuCl4]−1 and CnF6 we highlighted the signicance of
an appropriate account of two-electron PCE corrections in a two-
component framework that allows us to unambiguously and sys-
tematically approach reference 4DC(G) results in the parent four-
component framework. In particular, we demonstrate that our
(e)amfX2C models enable X2C calculations of x-ray ionization
potentials—and the accompanying resolution of fine-structure fin-
gerprints of L- and M-edges in heavy- and superheavy-element
complexes—where the transformation to two components is per-
formed prior to the (molecular) SCF step while yielding results both
on par with corresponding molecular mean-field calculations and in
excellent agreement with the parent four-component ones. More-
over, we illustrate that it is possible within our (e)amfX2C models
to account for two-electron effects originating from the Gaunt inter-
action. To ultimately strive for genuine comparisons of computed
x-ray spectroscopic data with experiment, an inclusion of the full
Breit interaction, higher-order correlation effects as well as QED
corrections will be essential to establish a computational model of
true predictive power.89 While the former two factors are currently
under consideration within the DIRAC developers’ community,108

QED corrections have very recently been put forward for correlated
calculations in a two-component framework109 and will be made
available in a future extension of our (e)amfX2C models.

In summary, we are confident that the picture-change-error
correction models for the X2C Hamiltonian presented in this con-
tribution constitute an important milestone toward a universal
and reliable applicability of relativistic two-component quantum-
chemical approaches maintaining the accuracy of the parent four-
component one at a fraction of its computational cost. In order to
corroborate the latter, we are currently undertaking comprehen-
sive studies of zero-field splittings in p- and d-block molecules as
well as the calculations of EPR parameters of d- and f -element
complexes on the basis of our (e)amfX2C Hamiltonian models
within a correlated computational framework. Finally, since rela-
tivistic real-time time-dependent DFT110 and wave function-based
correlated approaches such as the density matrix renormalization
group model111 provide access to the absorption spectra of complex
molecular systems in the valence- or core-excited range includ-
ing a variational account of spin–orbit interaction, we intend to
apply these approaches within our (e)amfX2C framework to a set
of representative molecular d-block and actinide compounds.
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We dedicate this work to the memory of the late Bernd
Schimmelpfennig, who passed away unexpectedly in 2019. He was,
among other contributions, a pioneer in making corrections for
two-electron picture-change effects within a two-component Hamil-
tonian framework not only popular but also, for the first time, widely
usable in quantum chemistry.
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approach for correlated relativistic calculations,” J. Chem. Phys. 131, 124116
(2009).
33K. G. Dyall, “An exact separation of the spin-free and spin-dependent terms of
the Dirac–Coulomb–Breit Hamiltonian,” J. Chem. Phys. 100, 2118 (1994).
34J. Liu and L. Cheng, “An atomic mean-field spin-orbit approach within exact
two-component theory for a non-perturbative treatment of spin-orbit coupling,”
J. Chem. Phys. 148, 144108 (2018).
35M. Blume and R. E. Watson, “Theory of spin-orbit coupling in atoms I. Deriva-
tion of the spin-orbit coupling constant,” Proc. R. Soc. Lond. A 270, 127–143
(1962).

J. Chem. Phys. 157, 114106 (2022); doi: 10.1063/5.0095112 157, 114106-23

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.5281/zenodo.6414910
https://doi.org/10.1002/cphc.201100682
https://doi.org/10.1016/j.physrep.2013.11.006
https://doi.org/10.1063/5.0004844
https://doi.org/10.1063/5.0005094
https://doi.org/10.1002/wcms.1331
https://doi.org/10.1063/1.5143173
https://doi.org/10.1063/5.0002831
https://doi.org/10.1016/0003-4916(74)90333-9
https://doi.org/10.1103/physreva.33.3742
https://doi.org/10.1103/physreva.33.3742
https://doi.org/10.1088/0031-8949/34/5/007
https://doi.org/10.1063/1.466059
https://doi.org/10.1063/1.472460
https://doi.org/10.1063/1.1436462
https://doi.org/10.1063/1.1768160
https://doi.org/10.1063/1.1818681
https://doi.org/10.1063/1.1818681
https://doi.org/10.1007/s00214-005-0003-2
https://doi.org/10.1063/1.473860
https://doi.org/10.1063/1.473860
https://doi.org/10.1063/1.1844298
https://doi.org/10.1063/1.2338033
https://doi.org/10.1007/s00214-006-0161-x
https://doi.org/10.6084/m9.figshare.12046158.v3
https://doi.org/10.1063/1.2137315
https://doi.org/10.1080/00268970600662481
https://doi.org/10.1063/1.2222365
https://doi.org/10.1063/1.2436882
https://doi.org/10.1063/1.3159445
https://doi.org/10.1063/1.3159445
https://doi.org/10.1021/acs.jctc.6b00740
https://doi.org/10.1021/acs.jctc.6b00740
https://doi.org/10.1007/s00214-011-1081-y
https://doi.org/10.1063/1.3239505
https://doi.org/10.1063/1.466508
https://doi.org/10.1063/1.5023750
https://doi.org/10.1098/rspa.1962.0207


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

36.M. Blume and R. E. Watson, “Theory of spin-orbit coupling in atoms, II.
Comparison of theory with experiment,” Proc. R. Soc. Lond. A 271, 565–578
(1963).
37B. A. Heß, C. M. Marian, U. Wahlgren, and O. Gropen, “A mean-field spin-
orbit method applicable to correlated wavefunctions,” Chem. Phys. Lett. 251, 365
(1996).
38AMFI, an atomic mean-field spin-orbit integral program, 1996, Bernd Schim-
melpfennig, University of Stockholm.
39I. Fdez. Galván, M. Vacher, A. Alavi, C. Angeli, F. Aquilante, J. Autschbach, J. J.
Bao, S. I. Bokarev, N. A. Bogdanov, R. K. Carlson, L. F. Chibotaru, J. Creutzberg, N.
Dattani, M. G. Delcey, S. S. Dong, A. Dreuw, L. Freitag, L. M. Frutos, L. Gagliardi,
F. Gendron, A. Giussani, L. González, G. Grell, M. Guo, C. E. Hoyer, M. Johans-
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