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ABSTRACT
Four-component relativistic treatments of the electron paramagnetic resonance g-tensor have so far been based on a common gauge origin
and a restricted kinetically balanced basis. The results of such calculations are prone to exhibit a dependence on the choice of the gauge
origin for the vector potential associated with uniform magnetic field and a related dependence on the basis set quality. In this work, this
gauge problem is addressed by a distributed-origin scheme based on the London atomic orbitals, also called gauge-including atomic orbitals
(GIAOs), which have proven to be a practical approach for calculations of other magnetic properties. Furthermore, in the four-component
relativistic domain, it has previously been shown that a restricted magnetically balanced (RMB) basis for the small component of the four-
component wavefunctions is necessary for achieving robust convergence with regard to the basis set size. We present the implementation of
a four-component density functional theory (DFT) method for calculating the g-tensor, incorporating both the GIAOs and RMB basis and
based on the Dirac–Coulomb Hamiltonian. The approach utilizes the state-of-the-art noncollinear Kramers-unrestricted DFT methodology
to achieve rotationally invariant results and inclusion of spin-polarization effects in the calculation. We also show that the gauge dependence
of the results obtained is connected to the nonvanishing integral of the current density in a finite basis, explain why the results of cluster
calculations exhibit surprisingly low gauge dependence, and demonstrate that the gauge problem disappears for systems with certain point-
group symmetries.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0103928

I. INTRODUCTION

Analysis of the g-tensor, one of the parameters of electron
paramagnetic resonance (EPR) spectroscopy, is an important tool
in characterizing the electronic structure of open-shell systems.
The usefulness of EPR parameters is further increased by the
fact that EPR tensors can be used to study the Curie contribu-
tion to the nuclear magnetic resonance (NMR) parameters of a

paramagnetic species.1–3 When heavy atoms are present in the
system, the quality of the relativistic computational methodology
becomes very important in the prediction of the components of
the g-tensor. For this reason, relativistic methods based on density
functional theory (DFT) that include spin–orbit effects variationally
(self-consistently) are becoming increasingly popular for the calcula-
tion of EPR parameters (see, for example, Refs. 4–18). One reason for
their popularity is that these methods combine the computational
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efficiency of DFT with the accuracy of four- or two-component
relativistic theories. Besides the efficient inclusion of correlation
effects by DFT approaches, the quality of these methodologies stands
on three pillars: (1) the treatment of relativistic effects in general
and spin–orbit effects in particular; (2) the quality of the DFT
approaches used, i.e., the inclusion of spin-polarization effects and
the usage of noncollinear exchange–correlation (xc) functionals;
(3) the quality of the basis sets, i.e., a proper balance of the large-
and small-component basis, and use of a gauge-origin-dependent
basis in order to enforce the gauge origin independence of the
result.

The difference between the g-tensor and the free electron
g-value, the g-shift, is mainly caused by spin–orbit (SO) interaction.
The prediction of the g-shift for systems that contain only light ele-
ments, e.g., organic radicals, usually requires only the inclusion of
linear SO effects in the calculation. However, even in this case, one
should consider more accurate relativistic methodologies because
there are cases of systems containing relatively light elements for
which higher-order SO contributions become important (see, for
example, the quadratic SO contribution to the g-shift in the SeO
molecule in Ref. 5). In the case of systems containing heavy elements,
the importance of higher-order SO effects should not be underesti-
mated11 and the variational inclusion of relativistic effects becomes
necessary. The implementation of (one-electron) nuclear SO effects
variationally is straightforward and computationally undemanding.
In contrast, computationally efficient inclusion of the (two-electron)
spin-same-orbit (SSO) and spin-other-orbit (SOO) interactions19 is
a more challenging task. Fortunately, the SOO contributions are rel-
atively more important in the calculations of systems that contain
only light elements than for heavy-element-containing systems.16,20

As a result, methods that are based on the Dirac–Coulomb
Hamiltonian, and thus omit the SOO terms, provide a reason-
able compromise between precision and computational efficiency
when predicting g-tensor parameters of heavy-element-containing
systems.

Another issue related to that of inclusion of higher-order
spin–orbit effects in the calculation is the restriction of current
DFT methodologies to the calculation of those magnetic parts of
the EPR effective-spin Hamiltonian that are only linear in the spin
operators.21 The effective Hamiltonian that contains only linear
terms for description of the electronic Zeeman and hyperfine
interactions can only properly describe magnetic interactions of
systems with higher than triplet multiplicity, S > 1, when higher-
than-linear SO effects can be safely neglected.22 On the other
hand, for systems where only two or three electronic states are
populated, there is no such restriction, and this type of effec-
tive Hamiltonian properly describes systems with arbitrary-strength
SO interactions of any order.22 Therefore, those DFT approaches
that aim to include higher-order SO effects are currently only
suitable for the treatment of systems with doublet or triplet
multiplicity.

Upon the incorporation of spin–orbit effects into the
Hamiltonian, the exchange–correlation energy of open-shell species
derived from nonrelativistic (nr) xc functionals becomes dependent
on the rotation of the Cartesian coordinate axis system. This
unphysical behavior is a result of the reliance of nr xc functionals on
the quantization axis that defines alpha and beta densities and of the
coupling of spatial and spin degrees of freedom mediated by the SO

interaction. This class of xc functionals is often referred to as
collinear. Although the ideal solution to this problem would be
to use genuine relativistic noncollinear xc functionals, so far only
limited work has been done on their development.23–27 Nowadays
the preservation of the rotational invariance of the xc energy is
usually accomplished by the introduction of the noncollinear vari-
ables into the definition of the nr xc functionals. For example, the
collinear variable ρz , the z component of the spin density, is sub-
stituted by the length of the spin density vector ∣ρ⃗∣ in noncollinear
approaches. Interested readers can find more details on the devel-
opment of noncollinear xc functionals for open-shell systems in
Refs. 17, 21, and 28–33 and the works cited therein. In particu-
lar, we note the problem of numerical instabilities that arise when
the spin density approaches zero in the noncollinear xc potentials
and kernels that involve gradient variables, discussion of which
may be found in Refs. 31 and 32. In this work, we employ the
noncollinear ansatz of Scalmani and Frisch31 with the regulariza-
tion of xc potentials and kernels presented in Ref. 32. The quality of
the noncollinear DFT methodology is also closely related to the qua-
lity of the Kohn–Sham (KS) determinant. Nowadays, state-of-the-
art DFT methodology utilizes a Kramers-unrestricted KS deter-
minant to account for the important spin-polarization effects.
In contrast, the DFT methods based on Kramers-restricted KS
determinants neglect spin-polarization effects, leading to unsat-
isfactory results, especially in the case of hyperfine coupling
constants.34

Without special measures, calculations of molecular properties
that depend on a uniform external magnetic field are plagued by
the gauge dependence of the results. This dependence vanishes in
the complete basis set limit; thus, the gauge dependence problem
can be mitigated by using sufficiently saturated basis sets. How-
ever, there also exist well-established methods that provide reliable
results without the need for imposing additional significant require-
ments on the basis set size. The most popular methods in this respect
are the ones that use gauge-including atomic orbitals (GIAOs), also
known as London atomic orbitals (LAOs).35,36 The success of the
GIAO-based approaches is due less to the formal gauge indepen-
dence of the results themselves than to the fast convergence of
the results with the basis set size. The use of GIAOs shifts part
of the burden of describing the magnetic field dependence of the
wavefunctions from the molecular orbital coefficients to the atomic
orbital basis itself, which ultimately decreases the basis set require-
ments. In the nonrelativistic case of a hydrogen-like system, the
LAOs properly describe the first-order response of the wavefunction
with respect to a uniform external magnetic field. In the relativis-
tic case, the LAOs provide a correct description of the first-order
response up to order c−2, see also the discussion in Ref. 37.

In addition, when developing four-component methods for the
calculation of molecular properties that involve magnetic fields, one
must pay special attention to proper magnetic balance between the
basis of the small and large components of the four-component
wavefunction. Moreover, for the four-component calculation of
second-order magnetic properties, the inclusion of magnetically bal-
anced basis is absolutely necessary. The most relevant approaches
include the so-called Kutzelnigg transformation,38 the restricted
magnetically balanced basis (RMB),37,39–41 and the simple magnetic
balance,42,43 (we refer the interested reader to a more detailed dis-
cussion of the magnetically balanced bases in Ref. 44). In this work,
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we will utilize the RMB approach as it allows the calculation of both
NMR shielding37,39,40 and indirect spin–spin coupling tensors.41 To
summarize, one can safely assume that the combination of an RMB
basis with GIAOs for the calculation of the g-tensor within the four-
component framework is expected to exhibit robust convergence
with the basis set size.

There is evidence that the gauge dependence of the calculated
results is usually less severe for the g-tensor than for other magnetic
properties—such as, for example, the NMR shielding tensor.4,20,45–48

However, there are instances where the gauge dependence of the
g-tensor calculations becomes noticeable and warrants the develop-
ment of methods that address the issue, see Refs. 4 and 49–52 and
the discussion in Ref. 52. Glasbrenner et al.52 noticed that in many
cases, the somewhat smaller gauge dependence of g-tensor calcula-
tions “can also be explained by the fact that most previous studies
focused on g-tensors of small molecules.” However, we have also
found this to be the case for some systems containing a single heavy
element, regardless of the system size (see, for example, Ref. 48). As
explained below, in such a case, the negligible gauge dependence of
the g-tensor is connected to the symmetry of the immediate elec-
tronic environment of the heavy atom. In other cases, even small
systems can exhibit strong gauge dependence of the results when
one moves the gauge away from the molecular center.4,49,52 How-
ever, such gauge choices are artificial and chosen only to make the
point; in practical applications, one would use a well-defined molec-
ular gauge (e.g., the center of nuclear charge of the molecule, the
center of mass of the molecule, or the center of the electron spin
density, among others),52 which, as mentioned above, usually leads
to rather small gauge dependence of the results. There are, how-
ever, situations where choosing an optimal position of the gauge
is not possible. The most obvious example is that of solid-state
(periodic) calculations, in which the computational methodologies
must be based on distributed gauge origin methods (such as GIAO
methods), as potentials dependent on a single gauge origin are not
periodic. In single molecule calculations, the choice of the gauge
becomes problematic if multiple spin centers are present in the sys-
tem. A special case of these is that of so-called “molecular-cluster
computations,” which are used as an approximation to solid-state
calculations.53

Although the development of DFT methodologies for g-tensor
calculations has a long history (see, for example, Refs. 4, 9, 20, and
54–59 and the works cited therein), the development and imple-
mentation of noncollinear DFT approaches that include spin–orbit
effects variationally is rather rare.5,16,18,60 From this list, only
the work of Franzke and Yu18 tackles the gauge dependence of
the results at all, with the authors employing GIAOs. All four of
the noncollinear DFT methodologies just mentioned include the
full nuclear SO interaction, but they include the two-electron SO
interaction (SSO and SOO contributions) at various levels of theory
that usually involve some approximation to the full Coulomb–Breit
electron–electron interaction. The authors of the two-component
methodologies presented in Refs. 5 and 16 approximate SSO and
SOO terms by means of the atomic-mean field approach,61,62 while
in Refs. 16 and 18, the SSO contribution is modeled by scaling
the nuclear SO term63,64 and the SOO contribution is neglected.
The four-component method developed in Ref. 60 is based on the
Dirac–Coulomb Hamiltonian and, thus, includes the SSO contribu-
tion, while the SOO interaction is omitted as it is a part of the Gaunt

electron–electron interaction.19 All four methodologies5,16,18,60 take
advantage of the noncollinear reformulation of the otherwise
collinear nr xc functionals to make the calculated results rotationally
invariant. However, in order to take into account the gradient vari-
ables that are necessary to utilize functionals beyond local-density
approximation, the noncollinear ansatz used is derived from the
gradient of the length of the spin density, ∇⃗∣ρ⃗ ∣ (see, for example,
Refs. 33 and 65). As a result, some of the terms appearing in the xc
potential exhibit numerical instabilities.31,32 In Refs. 5 and 60, these
unstable terms are simply neglected, which makes the xc potential
non-variational with respect to the xc energy, but the expressions
become numerically stable [see Eq. (68) and the corresponding dis-
cussion in Ref. 17]. On the other hand, the authors of Refs. 16 and 18
use the noncollinear methodology as presented in Ref. 66, where it is
not clear if the numerical instabilities have been avoided by neglect-
ing unstable terms as done in Refs. 5, 33, and 60, or by using a large
cutoff threshold as done in Ref. 65, or by other methods—or if they
have been avoided at all.

The goal of this work is to provide a state-of-the-art method-
ology that addresses all the points discussed above as follows:
(1) It treats the relativistic effects variationally and is based on
the Dirac–Coulomb Hamiltonian; (2) it includes spin-polarization
effects by means of the Kramers-unrestricted KS determinant, and
it utilizes noncollinear regularized xc functionals; (3) it takes advan-
tage of the London atomic orbitals as well as a restricted magnetically
balanced basis when constructing the small component of the four-
component wavefunction. The presented approach thus aims to
provide both a benchmark methodology for the development of
more approximate relativistic methods and a robust way to predict
the g-tensor in routine applications.

In Secs. III–V, we present the four-component theory for cal-
culating the g-tensor using the RMB–GIAO, restricted kinetically
balanced, and restricted magnetically balanced bases, respectively.
Section VI contains the computational details of our calculations,
which are then presented in Sec. VII. In Sec. VII, we discuss the
convergence of the g-tensor results with the basis set size, the use
of the double point-group symmetry in estimation of the g-tensor
gauge dependence, and the surprisingly weak gauge dependence of
the results in the molecular-cluster calculations. In Sec. VIII, we
present our concluding remarks. Finally, in Appendixes A and B,
we prove the continuity equation within the framework of the
Dirac–Kohn–Sham theory as well as an important consequence
thereof: the vanishing integral of the current density.

II. NOTATION
Throughout this work, we use the Hartree system of atomic

units. Thus, for example, the Bohr magneton has the value 1
2c ,

with c being the speed of light in atomic units. Summation over
repeated indices is assumed unless stated otherwise. Indices i, j
denote occupied positive-energy molecular orbitals, u, v, and k
denote Cartesian components, m and n represent components of the
four-component vector 1, . . . , 4, and η represents the scalar atomic
orbital basis. In addition, we employ flattened atomic orbital indices
μ, ν, which combine the four-component and atomic orbital indices,
μ ∶= mη (see also the discussion in Ref. 32). Unless stated other-
wise, bold font indicates a matrix whose dimension is defined in the
text.
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III. CALCULATION OF THE g-TENSOR USING
AN RMB–GIAO BASIS

Within the framework of Kramers-unrestricted (KU) Hartree–
Fock (HF) and density functional theory (DFT), components of the
g-tensor can be calculated as5,21,60

guv =
2c
S

dE(J⃗v , B⃗)
dBu

∣
B⃗=0

, (1)

where J⃗v is the magnetization vector of the vth Kohn–Sham (KS)
determinant, and S is the effective spin of the system. The formal
multiplicity of the system, 2S + 1, is equal to the number of popu-
lated states, i.e., the number of electronic states that are described by
the EPR effective-spin Hamiltonian.21,67 Each of the three orthogo-
nal magnetization vectors corresponds to a separate KS determinant,
which is in practice obtained from an independent self-consistent
calculation (see also the discussion in Ref. 21). The elements of the
g-tensor are then obtained as the first-order derivative of the total
electronic energy E with respect to an external uniform magnetic
field B⃗. In the Coulomb gauge, the vector potential corresponding to
this magnetic field has the form

A⃗ = 1
2
(B⃗ × r⃗G), r⃗G = r⃗ − r⃗0, (2)

where r⃗0 is the position of the gauge origin and r⃗ is the position
vector of the electron. Within the Dirac–Hartree–Fock (DHF) and
Dirac–Kohn–Sham (DKS) formalisms, the minimal coupling sub-
stitution, p⃗→ p⃗ + 1

c A⃗, is used to obtain the electronic energy of a
system in the presence of an external magnetic field,

E(J⃗v , B⃗) = ⟨φi(J⃗v , B⃗)∣h(B⃗)∣φi(J⃗v , B⃗)⟩ + E2e(J⃗v , B⃗), (3)

h(B⃗) = cα⃗ ⋅ p⃗ + α⃗ ⋅ A⃗ + (β − I4)c2 − V nuc(r⃗)I4, (4)

E2e(J⃗v , B⃗) = E ee(J⃗v , B⃗) − ξE ex(J⃗v , B⃗) + E xc[J⃗v , B⃗, (1 − ξ)]. (5)

Here, β and α⃗ are the 4 × 4 Dirac matrices given by

β =
⎛
⎜
⎝

I2 02

02 −I2

⎞
⎟
⎠

, α⃗ =
⎛
⎜
⎝

02 σ⃗

σ⃗ 02

⎞
⎟
⎠

, (6)

where σ⃗ is a vector constructed from the Pauli matrices,

σ1 =
⎛
⎜
⎝

0 1

1 0

⎞
⎟
⎠

, σ2 =
⎛
⎜
⎝

0 −i

i 0

⎞
⎟
⎠

, σ3 =
⎛
⎜
⎝

1 0

0 −1

⎞
⎟
⎠

, (7)

and In (0n) is the n × n identity (zero) matrix. The dependence on
the magnetization vector and the external magnetic field is denoted
by (J⃗v , B⃗). The parameter ξ represents the admixture of the HF exact
exchange: ξ = 1 corresponds to pure HF theory, ξ = 0 to pure DFT,
and 0 < ξ < 1 to hybrid theories. V nuc(r⃗) is the scalar electrostatic
potential due to fixed atomic nuclei. The presence of heavy nuclei
and the four-component relativistic framework necessitates the use
of a finite model for the nuclear charge distribution.68 In this work,
we use an s-type Gaussian function to describe the finite-size nuclear

charge distribution (for detailed expressions, see Ref. 17). The two-
electron potential energy, Eq. (5), consists of the Coulomb energy
Eee, Hartree–Fock exchange energy Eex, and exchange–correlation
energy Exc,

E ee = 1
2∬

φ∗mi(r⃗1)φmi(r⃗1)φ∗nj(r⃗2)φnj(r⃗2)
∣r⃗1 − r⃗2∣

d3 r⃗1d3 r⃗2, (8)

E ex = 1
2∬

φ∗mi(r⃗1)φmj(r⃗1)φ∗nj(r⃗2)φni(r⃗2)
∣r⃗1 − r⃗2∣

d3 r⃗1d3 r⃗2, (9)

E xc = ∫ ε xc[ρ0, ∇⃗ρ0, ρ⃗, ∇⃗ρ⃗ ]d3 r⃗, (10)

where for the sake of simplicity, we have dropped the depen-
dence on the magnetic field and the magnetization vector from
the MOs, φmj(r⃗1) ∶= φmj(r⃗1, J⃗v , B⃗). In Eq. (10), εxc represents
the exchange–correlation energy density that depends within the
generalized-gradient approximation on the charge and spin densi-
ties and their gradients,

ρl(J⃗v , B⃗) = φ∗mi(J⃗v , B⃗) (Σl)mn φni(J⃗v , B⃗), (11)

Σl =
⎛
⎜
⎝

σl 02

02 σl

⎞
⎟
⎠

, l = 0, . . . , 3, (12)

with σ0 ∶= I2. Methods that include spin–orbit effects variation-
ally must employ the so-called noncollinear ansatz for the nr
exchange–correlation functionals (see also the discussion at the end
of this section). We refer the interested reader to Ref. 17 for a detailed
discussion of the implementation of both the perturbation-free and
the linear-response two-electron contributions to the energy and
potentials used in this work [see also Eqs. (27)–(29)].

The four-component molecular orbitals (MOs) φmi are
expanded in a finite set of four-component basis functions that com-
bine the GIAOs and the RMB basis for the small component of the
MO as follows17,37 (η is not a summation index),

φmi(r⃗, J⃗v , B⃗) = X RMB–GIAO
mμ (r⃗, B⃗)Cμi(J⃗v , B⃗), (13)

X RMB–GIAO
mnη (r⃗, B⃗) = O RMB

mn ωη(r⃗, B⃗) χη(r⃗), (14)

ORMB =
⎛
⎜
⎝

I2 02

02
1
2c

σ⃗ ⋅ (p⃗ + 1
c

A⃗)

⎞
⎟
⎠

, (15)

where μ ∶= nη and χη(r⃗) is a scalar basis function. In Eq. (13), the
molecular orbital coefficients Cμi(J⃗v , B⃗) are the solutions of the Fock
equation in the presence of a magnetic field B⃗, where the Fock matrix
is obtained as the derivative of the energy given in Eq. (3) with
respect to the density matrix (see, for example, Refs. 17 and 32). In
Eq. (14), we apply London orbitals in the framework of the four-
component theory using the approach presented in Ref. 37, where
the phase factor ωη, which ensures energy invariance with respect to
the change of the gauge origin r⃗0, has the form

ωη(r⃗, B⃗) = exp{−i
2c
[B⃗ × (R⃗η − r⃗0)] ⋅ r⃗}. (16)
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Here, R⃗η is the position of the nucleus at which the atomic orbital
χη is centered. The function ωηχη is known as a London atomic
orbital.35 Because the four-component basis functions, Eq. (14), have
an explicit dependence on the perturbation parameters B⃗, it is useful
to follow the perturbation theory formalism based on the Lagrange
functional. This allows us to take advantage of the variational condi-
tions imposed on the Lagrangian and simplify the expression for the
energy derivative (for more details see, for example, Refs. 69 and 70).
By employing the perturbation-dependent basis, Xmμ, the g-tensor
can then be expressed as

guv =
2c
S
[∂Lv

∂Bu
+ ∂Lv

∂Xmμ

dXmμ

dBu
+ ∂Lv

∂X∗mμ

dX∗mμ

dBu
]∣

B⃗=0

, (17)

where ∂/∂λ and d/dλ denote the partial and total derivatives with
respect to the variable λ, respectively. The Lagrange functional Lv is
constructed from the electronic energy in Eq. (3) and the orthonor-
mality constraints on the molecular orbitals as follows [here and in
Eq. (19), v is not a summation index]:

Lv ∶= L[B⃗, X(B⃗), C(J⃗v , B⃗), ε(J⃗v , B⃗)]
= E[B⃗, X(B⃗), C(J⃗v , B⃗)]−εi(J⃗v , B⃗)

× [C†
i (J⃗v , B⃗)S(X)Ci(J⃗v , B⃗)−1]. (18)

Here, the overlap matrix in the RMB–GIAO basis has the form
Sμν = ⟨X RMB–GIAO

μ ∣X RMB–GIAO
ν ⟩ and the bold font on MO coefficients,

Ci, indicates that the ith molecular orbital is a vector, Cμi. Combin-
ing Eqs. (17) and (18) then leads to the following expression for the
g-tensor:

guv =
2c
S

C†
i (J⃗v , 0)[hBu − SBu εi(J⃗v , 0) +V2 e,Bu(J⃗v , 0)]Ci(J⃗v , 0),

(19)

hBu
μν = ⟨XBu

μ ∣h(0)∣X RKB
ν ⟩ + ⟨X RKB

μ ∣h(0)∣XBu
ν ⟩

+ 1
2
⟨X RKB

μ ∣(r⃗G × α⃗)u∣X RKB
ν ⟩, (20)

SBu
μν = ⟨XBu

μ ∣X RKB
ν ⟩ + ⟨X RKB

μ ∣XBu
ν ⟩, (21)

XBu
mμ =

dX RMB–GIAO
mμ

dBu
∣

B⃗=0
, (22)

with the restricted kinetically balanced (RKB) basis71,72 defined as
X RKB = X RMB–GIAO(B⃗ = 0). For the sake of simplicity, in the fol-
lowing, we omit the explicit dependence on (J⃗v , 0) of the MO
coefficients, one-electron energies, and two-electron potentials. The
MO coefficients Cμi and one-electron energies εi are the solutions of
the perturbation-free Fock equation, i.e.,

FC = SCε, (23)

Fμν = ⟨X RKB
μ ∣h(0)∣X RKB

ν ⟩ + V2e,0
μν , (24)

Sμν = ⟨X RKB
μ ∣X RKB

ν ⟩, (25)

with the two-electron perturbation-free potential, V2e,0, as
defined, for example, in Ref. 32. In Eq. (19), the two-electron
contribution, V2 e,Bu , consists of the Coulomb, HF exact exchange,
and exchange–correlation terms,

V2e,Bu = V ee,Bu − ξV ex,Bu +V xc,Bu[1 − ξ], (26)

V ee,Bu =∬
Tr{Ω0, RKB(r⃗1)D}Ω0,Bu(r⃗2)

∣r⃗1 − r⃗2∣
d3 r⃗1 d3 r⃗2, (27)

V ex,Bu =∬
Ω0, RKB(r⃗1)D Ω0,Bu(r⃗2)

∣r⃗1 − r⃗2∣
d3 r⃗1 d3 r⃗2, (28)

V xc,Bu = ∫ [fl Ωl,Bu(r⃗) + f̃ lk∇kΩl,Bu(r⃗)]d3 r⃗. (29)

In the above equations for the response two-electron potentials, the
density matrix D has the form

Dμν = CμiC∗νi, (30)

and the overlap distributions are defined as

Ωl, RKB
μν = (X RKB

mμ )
∗(Σl)mn X RKB

nν , (31)

Ωl,Bu
μν = (X RKB

mμ )
∗(Σl)mnXBu

nν + c.c. (32)

The implementation of the two-electron four-center integrals in the
RMB–GIAO basis and their contraction with the density matrix,
Eqs. (27) and (28), takes advantage of a novel formulation based
on the complex quaternion algebra, which leads to a significant
reduction of the computational cost when compared to stan-
dard algorithms.17 The exchange–correlation contribution V xc,Bu

is given by the derivatives of the exchange–correlation energy
density εxc,

fl =
∂ε xc

∂wt

dwt

dρl
, f̃ kl =

∂ε xc

∂wt

dwt

d(∇kρl)
, (33)

where the perturbation-free charge density ρ0 and spin density ρ⃗
have the form

ρl = Tr{Ωl, RKBD} (34)

and {wt} represents a set of noncollinear variables. In this work,
we use the set first proposed by Scalmani and Frisch.31 To make
the noncollinear xc potentials Vxc,0 and V xc,Bu numerically stable,
we follow the regularization procedure first described in Ref. 32 in
the framework of the four-component Kramers-unrestricted time-
dependent DFT (KU-TDDFT) methodology. In this work, we have
for the first time used this state-of-the-art noncollinear methodology
in combination with the RMB–GIAO basis for the calculation of the
EPR g-tensor.

IV. CALCULATION OF THE g-TENSOR
USING AN RKB BASIS

When formulating perturbation theory on the basis of the
Lagrange functional, one can choose either the MO coefficients or
the MOs themselves as the variational parameters. In the former
case, one formulates the theory in the finite basis from the start,
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whereas in the latter case, the transition to the finite basis is made
at a later stage of the derivation. The two different parametrizations
lead to different sets of variational conditions,

dLv

dC∗μi
= 0, (35)

δLv

δφ∗mi
= 0, (36)

which, in the case of the perturbation-dependent basis, result in dif-
ferent working expressions for molecular properties. Conversely, if
the basis does not depend on the perturbation parameters, the final
expressions for both parametrizations are identical. The approach
that defines the variational parameters as MO coefficients, is a more
rigorous one, as it takes into account the finite nature of the basis
from the start. The difference between the approaches vanishes
in the complete basis; therefore, both approaches are valid if the
provided finite basis is sufficiently large.

In Sec. III, we have used MO coefficients as the variational
parameters, due to which the g-tensor expressions contain terms
where the basis depends on the perturbation parameters, i.e., the
second and third terms on the right-hand-side (RHS) of Eq. (17).
To derive the final expressions for the g-tensor with the RKB basis,
one option is to start from the RMB–GIAO expressions and remove
terms that originate in the London phase factor [Eq. (16)] and the
magnetic part of the RMB basis. Alternatively, one may use the
MOs as variational parameters—as was done in Ref. 60—and, there-
fore, neither the London orbitals nor the magnetic part of the RMB
basis would appear in the final working expression. Note in pass-
ing that the formulation of the response theory based on the MOs
as variational parameters may prove advantageous as it simplifies
the implementation of the indirect spin–spin coupling tensor17 and
helps to avoid possible divergences arising from the operator of the
nuclear magnetic moment.73

In the following, we reformulate the theory for the calculation
of the g-tensor presented in Ref. 60 in terms of the four-component
current density. This formulation becomes useful later in the analy-
sis of the molecular-cluster calculations and in double point-group
symmetry considerations (see Sec. VII). The DKS expression for the
g-tensor, which depends only on the gauge origin and the RKB basis,
has the form (v is not a summation index)60

guv =
2c
S

C†
i (J⃗v , 0) hBu ,G Ci(J⃗v , 0), (37)

hBu ,G
μν = 1

2
⟨X RKB

μ ∣(r⃗G × α⃗)u∣X RKB
ν ⟩. (38)

Using the expression for the four-component perturbation-free
current density,

j⃗(J⃗v , 0) = −c Tr{X RKB†α⃗X RKBD(J⃗v , 0)}, (39)

one can rewrite Eq. (37) as follows:

guv = −
1
S ∫ [r⃗G × j⃗(J⃗v , 0)]

u
d3 r⃗. (40)

We refer the interested reader to other works74,75 that use the cur-
rent density in four-component theories of magnetic properties.

Equation (40) allows us to separate the gauge-dependent term in the
expression for the g-tensor into two terms,

guv = −
1
S
{∫ [r⃗ × j⃗(J⃗v , 0)]

u
d3 r⃗ − [r⃗0 × ∫ j⃗(J⃗v , 0)d3 r⃗]

u
}. (41)

From this expression, one can deduce that the integral of the current
density vanishes in a complete basis as the g-tensor results are gauge-
independent in the basis set limit, i.e.,

∫ j⃗(J⃗v , 0)d3 r⃗ = 0. (42)

Equation (42) follows from the continuity equation and the fact that
in the static (time-independent) case, the number of electrons is con-
stant in time in any closed volume. In Appendix A, we prove the
continuity equation within the DKS theory and then use it in the
proof of Eq. (42) in Appendix B. Interestingly, in pure DFT, ξ = 0,
Eq. (42) holds for the current density generated by an individual MO
(see Appendixes A and B).

V. CALCULATION OF THE g-TENSOR
USING AN RMB BASIS

Following on from the discussion in Sec. IV, one can also devise
a theory for g-tensor calculations by choosing the MO coefficients
as the variational parameters and by selecting the RMB condition
as the only dependence of the basis on the magnetic field, i.e., not
considering the London orbitals. The EPR g-tensor expressions then
depend on the gauge origin while also utilizing an RMB basis39 for
the small component of the four-component MOs,

φmi(r⃗, J⃗v , B⃗) = X RMB
mμ (r⃗, B⃗)Cμi(J⃗v , B⃗), (43)

X RMB
mnη (r⃗, B⃗) = O RMB

mn χη(r⃗), (44)

where μ ∶= nη and ORMB is defined in Eq. (15). The expressions for
the calculation of the g-tensor then have formally the same form as
the one presented in Sec. III [see Eq. (19)], where a RMB–GIAO basis
was employed (v is not a summation index),

guv =
2c
S

C†
i (J⃗v , 0)[hBu − SBu εi(J⃗v , 0) +V2 e,Bu(J⃗v , 0)]Ci(J⃗v , 0).

(45)
However, the different form of the RMB basis, compared to
RMB–GIAO one, gives a different expression for XBu ,

XBu
mμ =

dX RMB
mμ

dBu
∣

B⃗=0
. (46)

Then, to obtain the final working equations for g-tensor calcula-
tions in the framework of an RMB basis, one may simply substitute
Eq. (46) for all occurrences of XBu in Sec. III.

VI. COMPUTATIONAL DETAILS
In this work, we shall discuss the components of the g-shift Δgu,

which are defined as the relative change of the g-tensor eigenval-
ues with respect to the absolute value of the electron spin g-factor,
ge ≈ 2.002 319,
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gu = ge + Δgu. (47)

The g-tensor eigenvalues gu are calculated as the square root of the
G-tensor eigenvalues, where G = ggT. The sign of the g-tensor eigen-
values is chosen such that the product g1 g2 g3 has the same sign as
the determinant of the g-tensor (see Refs. 21, 76, and 77). In the
present work, all g-tensor determinants are positive; therefore, we
have chosen all g-tensor eigenvalues to be positive.

All calculations were performed with a developer’s ver-
sion of the ReSpect program,17,78 using the Dirac–Kohn–Sham
approach, and the nonrelativistic exchange–correlation (xc)
functionals PBE,79–81 PBE0,79–82 BLYP,79,83,84 and B3LYP.79,83–86

Furthermore, the xc potential is formulated within the Kramers-
unrestricted noncollinear methodology as specified in Table I in
Ref. 32. The numerical integration of the xc potential was done with
an adaptive molecular grid of medium size (program default, which
is about 10 000 points per atom). In all calculations, we used the
Gaussian nuclear charge model68 and the one-center approximation
for the [SS∣SS] integral class.17 We utilized all-electron uncon-
tracted Gaussian-type orbital basis sets of double-ζ, triple-ζ, and
quadruple-ζ quality plus versions thereof augmented with various
types of additional basis functions. In particular, we employed the
basis sets of Dyall that include various additional function-types
denoted by small letters: (v) valence correlating and valence dipole
polarization functions, (c) core correlating functions, and (a) diffuse
(augmenting) functions. In this work, we have used specifically the
bases labeled dyall-XZ, dyall-vXZ, dyall-cvXZ, and dyall-acvXZ,
where X = D, T, Q.87–93 In addition, we employed Dunning’s
cc-pV(X+d)Z basis set for third row elements and cc-pVXZ basis
set for the remaining light atoms, both standard and augmented
with diffuse functions.94–98

In some calculations, we employed the resolution-of-identity
approximation for the Coulomb contribution to the Fock matrix
(RI-J).99 In the case of Table III, we used the RI-J technique to
speed up the calculation, whereas in the case of Table S5 in the
supplementary material, we used RI-J out of necessity as the theory
described in Sec. V is implemented in the ReSpect program only in
conjunction with the RI-J technique. The auxiliary basis sets for the
RI-J procedure were generated by a modified even-tempered algo-
rithm100 and are part of the latest release of the ReSpect program
package version 5.2.0 (see Ref. 78).

The geometry of the trans–trans conformation of
N-acetylglycyl radical (labeled here as TT-NAG) has been
taken from Ref. 101, and the geometry of the Ru(III) anti-tumor
metastasis inhibitor, trans-(dimethyl sulfoxide)-(imidazole) tetra-
chlororuthenate(III)102 (labeled here as NAMI), from Ref. 103.
The geometry of 6,6′-[1,2-phenylenebis(azanediyl)] bis(phenolato)

FIG. 1. Isosurface of the spin density magnitude for TT-NAG (value = 0.01 a.u.).

FIG. 2. Isosurface of the spin density magnitude for NAMI (value = 0.005 a.u.).

tellurate(-1) (labeled here as Te–N anion) has been obtained
from Ref. 104 by substituting tBu groups by hydrogen atoms
in the crystallographic dataset No. 2005030. The geometry of
[Re3S4(H2PCH2CH2PH2)3Br3]+ (denoted here as Re3S4 cluster)

FIG. 3. Isosurface of the spin density magnitude of Re3S4 cluster (value = 0.01
a.u.).
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FIG. 4. Isosurface of the spin density magnitude of Te–N anion (value = 0.001
a.u.).

has been taken from Table S2 in the supplementary material of
Ref. 105. The orientations of the g-tensor principal axes of Re3S4
cluster, Te–N anion, TT-NAG, and NAMI are shown in Figs. S1–S4
in the supplementary material. The geometries for ClO3, GeH3,
SiH3, SO−3 , and MgF have been taken from Ref. 52 and those for
TeO, TeS, and Te2, from Ref. 106. For the SnH3 molecule, we
have used the geometry resulting from the relativistic optimization
published in Ref. 55. Finally, the geometries of OsOF5 and TiF3 have
been taken from Refs. 11 and 53, respectively.

Note that the visualizations in Figs. 1–4 depict the magnitude
of the spin density, as the spin density is a vector field rather than
a scalar field when obtained by relativistic methods that include
spin–orbit effects.

VII. RESULTS AND DISCUSSION
A. Calculations of the g-tensor using an RMB basis
in conjunction with a common gauge origin

In Secs. III–V, we have presented four-component theories for
the calculation of the g-tensor based on the RMB–GIAO, RKB, and
RMB bases, respectively. The last two approaches depend on the
choice of the common gauge origin (CGO); therefore, from now on,
we will label them as the RKB–CGO and RMB–CGO methods. The
advantage of the RKB–CGO method lies in its computational effi-
ciency (no four-center integrals in a magnetic basis are involved),
while RMB–GIAO has superior convergence with the basis set size
(see the discussion below). For the purpose of this work, we have
also implemented the RMB–CGO method to check whether it has
any computational advantage over the RKB–CGO or RMB–GIAO
approaches. In Table S1 in the supplementary material, we com-
pare RKB–CGO and RMB–CGO g-shifts using a basis of double-ζ
quality, a case in which the differences would be most pronounced.
As seen from the table, the differences between the methods are
negligible and, thus, the RMB–CGO method provides no computa-
tional advantage over the RKB–CGO approach. The insignificance
of the effect of including the RMB basis when compared to the
RMB–GIAO basis can be understood by the fact that the mag-
netic part of the RMB basis affects only the small components,
while GIAOs influence both the large and small components of the
four-component MOs. In the complete basis, the four-component
expressions for the first-order magnetic properties (including
the g-tensor) depend only on the occupied unperturbed MOs.60

Therefore, one expects a rather minor effect of the RMB basis, as

it affects only the small components of the MOs, which are small in
the case of occupied unperturbed MOs. On the other hand, the four-
component expressions for the second-order magnetic properties
in the complete basis depend on the linear-response MOs.107 More
importantly, the expansion of the linear-response MOs contains
vacant unperturbed negative-energy MOs38,108 for which the small
components of the MOs are large. Therefore, an accurate descrip-
tion of the linear-response MOs requires the magnetically balanced
basis (see Refs. 37–44), e.g., the RMB basis.37,39–41 In principle, there
could exist situations where the RMB–CGO method has a signif-
icantly better convergence with basis set size than the RKB–CGO
method. However, the RMB–CGO approach has no significant com-
putational advantage over the superior RMB–GIAO method and,
thus, should be abandoned altogether.

In the view of the above discussion, an interesting question
is whether the RKB–GIAO basis would yield similar results as
RMB–GIAO one and whether it could significantly reduce the
computational cost because of the simplified calculation of the two-
electron integrals. In Sec. S1 in the supplementary material, we
analyze the consequences of the two possible definitions of the
RKB–GIAO basis in comparison to the RMB–GIAO one. The key
takeaway is that both RKB–GIAO approaches have only a minor
computational advantage over the RMB–GIAO approach as the
calculation of the time-consuming two-electron integrals over func-
tions of higher cardinal number that originate from the London
phase factor, Eq. (16), is necessary in all approaches. In addition, a
theoretical analysis reveals the inferiority of the RKB–GIAO meth-
ods compared to the RMB–GIAO approach in the estimated error
in variational bounds for the total electronic energy and the gauge
dependence of the final expressions. We therefore conclude that the
RMB–GIAO method is the preferred four-component method of
choice for the calculation of the EPR g-tensor.

B. On the use of contracted and uncontracted
basis sets

The four-component calculations with the ReSpect program17

are allowed only with uncontracted bases and hence the conclusions
drawn below are valid only for those bases. Table I presents the
components of the g-shift for a series of small compounds, includ-
ing those for which a strong dependence on the gauge origin was
found earlier in Ref. 52. Two different choices of CGO, at the cen-
ter of nuclear charges (COC) and at a point shifted by 10 Å from
the COC in all (x, y, and z) directions, yield only minor differences
in the results even for the low-quality double-ζ bases. The use of
triple-ζ bases further diminishes these differences (see Table S2 in
the supplementary material). This finding is in disagreement with
the results presented in Ref. 52. This may be explained by the use of
different computational protocols in the two works: different hybrid
functionals (PBE0 vs B3LYP), four-component treatment vs per-
turbation theory based on a nonrelativistic ansatz (one-component
treatment), and the effect of using uncontracted bases in the four-
component calculations. To verify this, we performed additional
calculations for GeH3—a molecule for which, according to Ref. 52,
the components of the g-shift significantly depend on the CGO
choice. In these calculations, we employed the B3LYP functional
and the def2-SVP and def2-TZVP bases as in Ref. 52. We did the
calculations at the one-component and four-component levels (see
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TABLE I. Calculated components of the g-shift (in ppt) using the PBE0 xc functional,
dyall-vDZ basis for Os and Te, cc-pV(D+d)Z for Mg, Si, S, and Cl, and cc-pVDZ for
the remaining atoms.

Gauge Δg1 Δg2 Δg3

ClO3

RMB–GIAOa 1.254 9.473 9.475
COCb 1.526 10.028 10.029

COC+10 Åc 1.520 9.717 9.722

GeH3

RMB–GIAOa −1.205 15.977 15.978
COCb −1.200 15.587 15.589

COC+10 Åc −1.205 15.170 15.178

MgF
RMB–GIAOa −2.053 −2.053 −0.063

COCb −2.061 −2.060 −0.053
COC+10 Åc −1.727 −1.685 −0.011

SiH3

RMB–GIAOa −0.144 2.332 2.332
COCb −0.137 2.297 2.298

COC+10 Åc −0.160 2.661 2.685

SO−3
RMB–GIAOa 0.266 3.794 3.796

COCb 0.330 3.965 3.968
COC+10 Åc 0.031 5.829 6.129

TeO
RMB–GIAOa −28.860 −28.860 −4.894

COCb −25.624 −25.624 −4.878
COC+10 Åc −29.752 −29.459 −4.580

Te2

RMB–GIAOa −88.832 −88.832 −11.842
COCb −85.015 −85.015 −11.828

COC+10 Åc −85.015 −85.015 −11.828

TT-NAG
RMB–GIAOa −0.184 1.748 3.316

COCb −0.182 1.616 3.125
COC+10 Åc −0.169 1.487 3.611

OsOF5

RMB–GIAOa −374.500 −374.452 −179.871
COCb −377.637 −377.587 −188.002

COC+10 Åc −380.119 −380.034 −187.975
aData calculated using RMB–GIAO basis (see the theory described in Sec. III).
bData calculated using RKB basis (see the theory described in Sec. IV). Gauge origin is
placed at the center of nuclear charges (COC).
cData calculated using RKB basis (see the theory described in Sec. IV). Gauge origin is
placed at the distance of 10 Å from the COC in each x, y, and z directions.

Tables S3 and S4 in the supplementary material, respectively), where
in the one-component calculations, we employed bases in both
contracted and uncontracted forms. It turned out that at the one-
component level, the use of uncontracted bases dramatically reduces
the dependence of the g-shift on the CGO choice compared to the
use of contracted bases. Therefore, for small and moderate-sized sys-
tems, the use of uncontracted bases may be a good option for the
CGO calculation of the EPR g-tensor in the absence of GIAOs.

C. Convergence with the basis set size
of the implemented RMB–GIAO method

The first example chosen for the validation of our implementa-
tion of the RMB–GIAO approach is the trans–trans conformation

of N-acetylglycyl (TT-NAG) radical. The EPR parameters of the
TT-NAG radical have been studied, and a significant gauge depen-
dence of the g-tensor has been reported.101

The structure, the numbering of atoms, and the orientation of
the g-tensor principal axis system of TT-NAG are shown in Fig. 5
and Fig. S1 in the supplementary material. As seen in Fig. 1, the dis-
tribution of the spin density in this radical is strongly delocalized,
which makes it an excellent case study for comparing g-tensors cal-
culated with different choices of gauge origins, see Table II. Besides
RMB–GIAO, we also calculated the g-shift components with CGO at
the center of nuclear charges (COC) and at different non-hydrogen
atoms. The presented results were obtained with the non-augmented
triple-ζ basis (cc-pVTZ used in this particular case), which is com-
monly used as a highest-quality basis set in DFT applications. We
also show the difference between the cc-pVTZ results and the results
obtained with a significantly larger basis set, augmented cc-pVQZ
(both in absolute values and as percentages). As expected, the cal-
culated g-tensors exhibit significant dependence on the choice of
gauge origin, though not all components are affected equally. The
smallest component Δgx, perpendicular to the radical plane, shows
the weakest dependence. This can be attributed to the nearly sym-
metric distribution of the spin density along this principal axis (see
Fig. 1). In contrast, the spin density along the other two principal
axes of the g-tensor in TT-NAG is more delocalized and asym-
metric due to the π-system of the radical. Consequently, the y and
z principal components are more strongly affected by the choice
of gauge origin. For the y component, the difference between the
RMB–GIAO value and the value obtained with a particularly bad
choice of CGO, at the position of O3, is above 160 ppm. The place-
ment of the gauge origin at Cα, closer to the maximum of the spin
density, also does not bring the calculated Δgy and Δgz into satis-
factory agreement with the RMB–GIAO values, with a difference
of about 100 ppm for Δgy and 120 ppm for Δgz . The full results
of the g-shift components calculated with cc-pVXZ (X = D, T, Q)
basis sets, both the basic and augmented versions, can be found in
Tables S5 and S6 in the supplementary material. The convergence
of the isotropic g-shift value with basis set quality, as calculated
with both RMB–GIAO and RKB–CGO, is shown in Fig. S5 in the
supplementary material. As expected, the RMB–GIAO values
converge faster than their RKB–CGO counterparts when non-
augmented bases are employed. However, in the case of augmented
bases, RMB–GIAO and RKB–CGO yield almost identical results
(the solid and dashed black lines), though the use of augmented
bases in routine applications would be impractical due the increased
computational cost involved even with the RKB–CGO method. The
addition of core correlating functions to valence bases (labeled as cv

FIG. 5. Atom numbering of TT-NAG.
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TABLE II. Calculated components of the g-shift (in ppm) for TT-NAG radical using PBE xc functional and cc-pVTZ basis set,
compared with values obtained with augmented cc-pVQZ basis at RMB–GIAO level. Data are calculated using theory that is
based either on the RMB–GIAO basis (see Sec. III) or on the RKB basis (see Sec. IV) with various choices of gauge origin.

Gauge

Δgx Δgy Δgz

cc-pVTZ Δa Δ%
b cc-pVTZ Δa Δ%

b cc-pVTZ Δa Δ%
b

RMB–GIAO −180.8 1.4 0.8 1818.9 −4.6 0.3 3471.3 −0.6 0.0
COCc −183.3 3.9 2.2 1716.3 98.0 5.4 3370.7 100.0 2.9
Cα

d −183.4 4.0 2.2 1719.1 95.2 5.2 3352.2 118.5 3.4
C1d −184.4 5.0 2.8 1753.8 60.5 3.3 3345.6 125.1 3.6
C2d −182.2 2.8 1.6 1677.1 137.2 7.6 3396.1 74.6 2.1
C3d −182.0 2.6 1.4 1672.9 141.4 7.8 3434.0 36.7 1.1
O1d −184.9 5.5 3.1 1774.3 40.0 2.2 3368.4 102.3 2.9
O2d −184.7 5.3 3.0 1761.3 53.0 2.9 3312.1 158.6 4.6
O3d −181.7 2.3 1.3 1654.1 160.2 8.8 3376.4 94.3 2.7
N1d −183.1 3.7 2.1 1709.7 104.6 5.8 3385.2 85.5 2.5
aDifference between results obtained with augmented cc-pVQZ and cc-pVTZ basis sets, see Tables S5 and S6 in the
supplementary material.
bDeviation from values obtained with augmented cc-pVQZ basis in %.
cGauge origin placed at the center of nuclear charges (COC) of the molecule.
dGauge origin placed at the specific atom, labeled according to Fig. 5.

and v, respectively) does not change the results, probably because the
difference between these bases is insignificant for light elements.

It has been shown that the gauge origin problem in g-tensor cal-
culations may be more severe for larger systems.52 Moreover, larger
systems, especially containing heavy elements, are computationally
challenging, especially when using GIAOs at the relativistic four-
component level. Therefore, our two next examples are the Te–N
anion and Re3S4 cluster (see Figs. S2 and S3 in the supplementary
material). The Te–N anion is an asymmetric doublet system with
highly delocalized spin density (Fig. 4). The Re3S4 cluster is a quar-
tet system that contains three metal centers with unpaired electrons
and the spin density is symmetrically distributed among Re and
three S atoms (Fig. 3). The components of the g-shift were calcu-
lated using RMB–GIAO and RKB–CGO with CGO at the center of
nuclear charges (see Table III). We used double- and triple-ζ quality
valence basis sets (Dyall’s on Re and Te and Dunning’s on the rest of
atoms). The Dyall basis sets were extended by core correlating and
diffuse functions, and the Dunning basis sets by diffuse functions
and by d functions for P and S (see Sec. VI for more details). The
bases of double-ζ quality perform poorly for the Re3S4 cluster, which
is probably because they are not adequate for the calculation of the
g-tensor in the case of strongly delocalized spin density (see columns
Δ%). In both systems in Table III, the effect of adding diffuse func-
tions to the triple-ζ basis is negligible in the RMB–GIAO results,
whereas it is still substantial in the RKB–CGO results. Further-
more, the core correlating functions for Te and Re and additional
d functions for P and S in the RMB–GIAO calculations have a
larger effect on the RMB–GIAO results than diffuse functions. As
expected, for both compounds, the RMB–GIAO results converge
faster than the RKB–CGO results with increasing quality of the
basis set.

Furthermore, we verified the conclusions concerning the con-
vergence of the RMB–GIAO and RKB–CGO results with the size

of Dyall’s bases, which are specifically designed for relativistic
calculations and are in general bigger than standard nonrelativis-
tic basis sets. For this purpose, we plotted the dependence of the
isotropic g-shift value on the basis set quality for a series of small
compounds (see Figs. S6–S10 in the supplementary material). The
calculations were performed with a series of bases, starting with
dyall-vXZ (X = D, T, Q) and extending them by adding core cor-
relating and augmenting (diffuse) functions. For educational pur-
poses, we included some results obtained with the dyall-XZ bases
(Figs. S7–S10 in the supplementary material). As expected, the
absence of valence correlating and valence dipole polarization func-
tions in the basis set has significant negative consequences for the
g-tensor calculations. Additionally, we demonstrated the relative
errors of the g-shift values calculated with different bases com-
pared to the results obtained with the RMB–GIAO method and
dyall-acvQZ basis taken as the basis set limit (see Fig. S11 in the
supplementary material). We have also plotted the effect of the basis
set quality on the components of the g-shift for the Te–N anion
and Re3S4 cluster, shown in Figs. S12 and S13, respectively. For all
systems, the addition of augmenting functions is more important
for the RKB–CGO calculations than for RMB–GIAO because the
inclusion of London orbitals extends the basis set with functions
with higher angular momentum, thus partially substituting aug-
menting functions. The use of a double-ζ quality basis set, including
its extended forms (up to acvDZ basis), may yield highly unsatis-
factory results even with the RMB–GIAO method, e.g., TeO, TeS,
and Te2 in Fig. S11. The RKB–CGO results obtained with extended
dyall-acvXZ bases converge almost as well, or just as well, as the
RMB–GIAO results. However, the calculations with augmented
bases containing diffuse functions with high angular momentum
become computationally demanding for moderate-sized systems.

To check the necessity of using diffuse functions, we separated
the effects of core correlating and augmenting (diffuse) functions
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TABLE III. Calculated components of the g-shift (in ppt) using RKB (CGO) and RMB–GIAO (GIAO) basis. Gauge origin is placed at the center of nuclear charges. The data have
been calculated with PBE xc functional and RI-J approximation.

Δgx Δgy Δgz

CGOa Δ%
b GIAOc Δ%

b CGOa Δ%
b GIAOc Δ%

b CGOa Δ%
b GIAOc Δ%

b

Te–N anion

vDZd −30.254 −2.3 −30.527 −1.4 14.370 53.2 12.846 37.0 −14.027 −18.4 −16.878 −1.8
cvDZe −30.030 −3.0 −30.340 −2.0 13.957 48.8 12.330 31.5 −14.670 −14.6 −17.269 0.5
acvDZf −31.022 0.2 −31.404 1.4 8.971 −4.4 9.815 4.6 −18.762 9.2 −18.347 6.8
vTZg −30.364 −1.9 −30.398 −1.8 10.498 11.9 10.411 11.0 −14.594 −15.1 −16.411 −4.5

cvTZh −30.191 −2.5 −30.234 −2.3 10.006 6.7 9.809 4.6 −15.362 −10.6 −16.905 −1.6
acvTZi −30.459 −1.6 −30.956 0.0 8.841 −5.7 9.379 0.0 −17.210 0.2 −17.183 0.0

Re3S4 cluster

vDZd 2.341 −75.2 3.300 −65.1 2.853 −70.9 3.834 −60.9 −89.818 7.7 −88.605 6.3
cvDZe 3.056 −67.7 5.096 −46.1 3.446 −64.9 5.502 −43.9 −87.569 5.0 −85.966 3.1
acvDZf 5.740 −39.3 5.922 −37.4 6.174 −37.1 6.355 −35.2 −89.931 7.9 −89.992 7.9
vTZg 8.811 −6.8 8.261 −12.6 9.240 −5.8 8.696 −11.4 −84.300 1.1 −84.413 1.3

cvTZh 8.673 −8.3 9.244 −2.2 9.068 −7.6 9.647 −1.7 −82.943 −0.5 −82.658 −0.9
acvTZi 9.615 1.7 9.456 0.0 9.987 1.8 9.810 0.0 −83.243 −0.2 −83.369 −0.0

aData calculated using the theory described in Sec. IV.
bDeviation from values obtained with the RMB–GIAO method and acvTZ basis in %.
cData calculated using the theory described in Sec. III.
dBasis of double-ζ quality: dyall-vDZ for Te and Re and cc-pVDZ for the remaining atoms.
eBasis of double-ζ quality: dyall-cvDZ for Te and Re, cc-pV(D+d)Z for P and S, and cc-pVDZ for the remaining atoms.
fBasis of double-ζ quality: dyall-acvDZ for Te, dyall-cvDZ for Re, augmented cc-pV(D+d)Z for P and S, and augmented cc-pVDZ for the remaining atoms.
gBasis of triple-ζ quality: dyall-vTZ for Te and Re and cc-pVTZ for the remaining atoms.
hBasis of triple-ζ quality: dyall-cvTZ for Te and Re, cc-pV(T+d)Z for P and S, and cc-pVTZ for the remaining atoms.
iBasis of triple-ζ quality: dyall-acvTZ for Te, dyall-cvTZ for Re, augmented cc-pV(T+d)Z for P and S, and augmented cc-pVTZ for the remaining atoms.

on the isotropic part of the g-tensor. We compared the relative
errors of the results obtained with dyall-avXZ and dyall-cvXZ bases
(X = D, T, Q) in Fig. S14 in the supplementary material. It appears
that for all the considered systems in Fig. S14 except for TT-NAG
(consisting only of light elements), the inclusion of core correlat-
ing functions improves the results more than augmenting basis sets
with diffuse functions. Moreover, adding augmenting functions to
double-ζ bases may worsen the results, e.g., TeO, TeS, and Te2 in Fig.
S14. The role of core correlating functions in calculating the g-tensor
can be rationalized as follows: The g-tensor can be primarily viewed
as a valence-shell property. However, valence-shell orbitals, being
orthogonal to the core orbitals, are affected by spin-polarization
of the latter. It was shown that core orbitals of transition metals,
in particular 2s and 3s, can be strongly polarized, sometimes even
stronger than valence-shell orbitals (see Tables 1 and 2 in Ref. 109).
The inclusion of core correlating functions may not be necessary for
all atoms (see Tables S8 and S9 in the supplementary material). We
have plotted the relative errors of the calculated g-shift components
for the Te–N anion and Re3S4 cluster (see Figs. S15 and S16 in the
supplementary material) when core correlating functions are added
to the basis only for selected atoms. It appears that for the Te–N
anion, core correlating functions are necessary only for Te (see Fig.
S15 in the supplementary material). However, for the Re3S4 cluster,
core correlating functions on the heavier atoms—Re and Br—do not
affect the results (Fig. S16 in the supplementary material, options
c1 and c2), whereas they are important for S, dyall-(c3)vXZ basis,
and light elements (bases dyall-cvXZ, X = D, Z). Note, that standard
nonrelativistic basis sets for light elements may not contain core

correlating functions (e.g., cc-pVXZ basis for S). Perhaps, some
insight which atoms may need core correlating functions may be
obtained by plotting the spin density obtained from a pilot calcula-
tion with a relatively small basis set (see Fig. S17 and Fig. 3 showing
the spin density in Te–N anion and Re3S4 cluster, respectively).
From the other side, in terms of computational time, extending basis
sets with core correlating functions costs less than with augment-
ing functions because the latter have higher angular momentum. In
conclusion, we recommend to use RMB–GIAO method using basis
of triple-ζ quality with core correlating functions added at least for
heavy and moderately heavy atoms, where significantly polarized
core is expected.

D. Double point-group symmetry considerations
The g-tensor of the planar system TiF3 exhibits a vanishingly

small dependence on the position of the gauge (see columns with
n = 1 in Table IV). This can be rationalized by using double group
theory, which in this case predicts that the integral of the current
density, Eq. (42), vanishes even in the finite basis. To prove this
statement, it is convenient to express the four-component current
density via the MOs, as written in Eq. (A8). Taking time-reversal
symmetry into consideration, one can show that the MO pairs that
constitute Kramers partners generate current densities with oppo-
site signs. Therefore, from the form of Eq. (A8), it is clear that in
the Kramers-restricted methodology, the current density is deter-
mined solely by the singly occupied MOs (SOMOs), i.e., by the MOs
without occupied Kramers partners. In the Kramers-unrestricted
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TABLE IV. Calculated isotropic g-shift for linear clusters of TiF3, SnH3, and OsOF5 containing n (1–5) molecules separated by 10 Å in the direction of the symmetry axis of the
molecules. All values were calculated using the PBE xc functional, cc-pVDZ basis for light and dyall-vDZ basis for heavy atoms (Sn and Os), and the relativistic theory based on
the RKB basis described in Sec. IV.

COCb COC+20 Åc

Symmetrya n = 1 n = 2 n = 3 n = 4 n = 5 n = 1 n = 5

[TiF3]n D3h −32.39 −32.39 −32.36 −32.35 −32.35 −32.39 −32.35
[ SnH3]n C3v 21.48 21.47 21.46 21.46 21.46 24.56 24.55
[OsOF5]n C4v −341.43 −341.53 −341.47 −341.43 −341.41 −333.49 −333.67
aPoint-group symmetry of the molecule.
bGauge origin placed at the center of nuclear charges (COC).
cGauge origin placed 20 Å (two intermolecular distances) away from the COC in the positive direction.

methodology (used in this work), one can still determine approx-
imate Kramers partners as well as the approximate SOMOs that
usually give the dominant contribution to the current density.
The TiF3 system belongs to the D3h group, and its SOMO belongs
to the E1/2 irreducible representation (irrep) of that group. In addi-
tion, the Dirac matrices α⃗ transform under the double point-group
operations in the same way as the position vector, and therefore in
the case of D3h, the (αx, αy) pair and αz belong to the E′ and A′′2 irre-
ducible representations, respectively (here, z is the symmetry axis).
The integral of the four-component current density generated by
the TiF3 SOMO then vanishes because neither the direct product
E1/2 ⊗ E1/2 ⊗ E′ nor E1/2 ⊗ E1/2 ⊗ A′′2 contains the totally symmetric
D3h irreducible representation A′1.

There are two useful points one may further infer from the anal-
ysis of molecular symmetry. First, the relative strength of the gauge
dependence caused by the different components of the gauge vector
may also be deduced from double group theory. For example, ana-
lyzing the symmetry of the OsOF5 system reveals that the dominant
gauge dependence is along its symmetry axis (because z belongs to
the totally symmetric C4v irrep A1). Second, in many systems con-
taining one heavy element, the SOMOs are often centered on the
heavy atom, so it may be useful to analyze the approximate sym-
metry of the immediate chemical environment of that heavy atom.
For example, in NAMI, a compound investigated for its potential in
clinical application,110,111 the weak gauge dependence of the g-tensor
results (also studied in Ref. 48) can be explained by double group
theory even though the system is not symmetric. The structure of
NAMI and the distribution of the spin density are shown in Fig. 2.
The components of the g-shift calculated with the RMB–GIAO and
RKB–CGO methods for three different CGO choices are presented
in Table S7, and the orientation of the g-tensor principal axes is
shown in Fig. S4 in the supplementary material. The computations
were done with dyall-cvXZ bases (X =D, T, Q). As mentioned above,
the gauge dependence of the g-tensor results is small and remains
so even for the most extreme choice of the gauge at COC+100 Å
(compare with the results for TT-NAG in Table S5 in the
supplementary material). One can rationalize this weak dependence
as follows: The immediate chemical environment of ruthenium
belongs approximately to the C4v group. However, the distribu-
tion of the spin density magnitude, Fig. 2, suggests that the SOMO
has an approximate symmetry of Oh rather than C4v . Indeed, upon
closer analysis, it can be shown that the SOMO approximately

belongs to the F3/2g irrep of the Oh group. Because the direct product
F3/2g ⊗ F3/2g ⊗ T1u does not contain the totally symmetric Oh irrep
A1g , this part of the SOMO gives a vanishing contribution to the
integral of the current density, Eq. (42). Therefore, the weak gauge
dependence of the g-tensor results of NAMI is caused only by the
smaller, nonsymmetric parts of the SOMO (i.e., by the small devi-
ation of the SOMO from being perfectly Oh-symmetrical) and by
spin-polarization effects, i.e., by the remaining occupied MOs (see
the discussion above).

E. Molecular-cluster computations
Cluster calculations are used in quantum chemistry as an

approximation to full periodic calculations of solids. In some cases,
simulating solids by clusters may be the only choice; this is because
for calculations of many molecular properties, relativistic meth-
ods incorporating periodic boundary conditions are not available.
When a cluster is composed of individual molecules with a rela-
tively weak intermolecular interaction, then cluster computations
usually provide a fair approximation to full periodic calculations. In
the following, we will consider only this type of molecular clusters.
As shown above, for some molecular systems, the gauge depen-
dence of the results is so significant that it cannot be mitigated by
a suitable choice of common gauge origin. An important question
is whether this gauge dependence is a serious issue in molecular-
cluster calculations. At first glance, one would expect that the gauge
dependence of the results is more severe in cluster than in single
molecule calculations. This expectation is based on the following
reasoning. First, a cluster generally occupies a much larger space
than a single molecule, and it has a highly delocalized spin den-
sity. Therefore, whatever the choice of the gauge, there is always a
molecule within the cluster that is far from the gauge origin. Sec-
ond, one would assume that the gauge error arising from a single
molecule is additive, and thus, it will increase with the number of
the molecules in the cluster. However, this assumption is not correct
when one chooses a gauge origin at the center of the cluster, e.g.,
at the center of the nuclear charges (COC). In this case, the gauge
error remains approximately constant regardless of the number of
molecules in the cluster (see Table IV). The small changes of the
g-shift that occur when varying the size of the cluster (see columns
with n = 1, . . . , 5) are due to the interaction of individual molecules
within the cluster. The distance between molecules was chosen to
be 10 Å to minimize this interaction. The small dependence of the
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g-shift of the [TiF3]n system can be rationalized by the negligible
gauge dependence of the single TiF3 molecule, see the discussion in
the previous paragraph. However, this argument is not valid for the
[ SnH3]n and [OsOF5]n systems, which have non-negligible depen-
dence of the g-shift on the gauge position, see columns with n = 1
in Table IV. The insensitivity of the g-shift to the size of the cluster
when COC is chosen as the gauge origin can be easily understood
from Eq. (41), if one neglects the intermolecular interaction. In that
case, the current density can be decomposed into n identical current
densities j⃗c, j⃗ = ∑n

c=1 j⃗c, one for each molecule in the cluster. Then,
Eq. (41) can be reformulated as follows:

guv = −
1
S

n

∑
c=1
{∫ [r⃗c × j⃗c(r⃗c, J⃗v , 0)]

u
d3 r⃗c

− [(r⃗0 − r⃗0c) × ∫ j⃗c(r⃗c, J⃗v , 0)d3 r⃗c]
u
}, (48)

where we have applied the integration-by-substitution method (also
known as change of variables) with r⃗c = r⃗ − r⃗0c. Here, the new inte-
gration variable r⃗c is the vector relative to the center of the nuclear
charges of individual molecules within the cluster, r⃗0c. Because we
have imposed a ferromagnetic state on the cluster, i.e., the spins of
the individual molecules are aligned, the effective spin of the clus-
ter has the form S = nS1, with S1 being the effective spin of a single
molecule. In addition, because we have neglected intermolecular
interaction and used the COC of the cluster as the common gauge
origin r⃗0, the second term on the RHS of the equation vanishes and
Eq. (48) simplifies to

guv = −
1
S1
∫ [r⃗1 × j⃗1(r⃗1, J⃗v , 0)]

u
d3 r⃗1. (49)

The reason why the sum of the gauge-dependent terms in Eq. (48)
vanishes is because for each molecule within the cluster, there exists
another one that has the opposite vector (r⃗0 − r⃗0c) and, thus, their
contributions to the gauge dependence [the second term on the RHS
of Eq. (48)] cancel each other. In the case of an odd number n of
molecules, there are pairs of molecules with cancelling terms plus
a central (unpaired) molecule for which (r⃗0 − r⃗0c) = 0. As a result,
Eq. (49) represents the g-tensor of a single molecule with the gauge
origin at its COC and thus it does not depend on the size of the clus-
ter. The small changes between the results for different n in Table IV
can be attributed to intermolecular interactions within the cluster,
which have been neglected in the derivation of Eq. (49). Therefore,
if the gauge origin is placed at the center of the cluster, the gauge
error is not cumulative and its magnitude is approximately the same
as the gauge error for a single molecule. If the gauge origin is shifted
away from the center of the cluster by some Δ, then again the magni-
tude of the total gauge error is approximately the same as the gauge
error for a single molecule with the gauge shifted by Δ from the
center of that molecule, see the last two columns in Table IV. One
can prove this by simply adding Δ to r⃗0 and r⃗0c vectors in Eq. (48).
Note that, on the basis of these considerations, before doing cluster
calculations, it would make sense to first estimate the gauge-related
error with the intended basis set for a single molecule as the differ-
ence between the results obtained when employing the RMB–GIAO
(Sec. III) and RKB–CGO (Sec. IV) methods. Then, if the error is
small, one may proceed with cluster calculations using the com-
putationally cheaper methodology involving the RKB basis. This

procedure does not account for intermolecular interactions within
the cluster, but in principle, it validates the results obtained by the
inferior RKB–CGO method when computational demands prohibit
the use of a method based on the RMB–GIAO basis.

VIII. SUMMARY AND CONCLUDING REMARKS
In this work, we have presented a four-component Dirac–

Kohn–Sham method for calculating the electron paramagnetic res-
onance g-tensor that takes advantage of both the restricted mag-
netically balanced (RMB) basis and gauge-including atomic orbitals
(GIAO). The developed RMB–GIAO method is based on the
Dirac–Coulomb Hamiltonian and thus includes nuclear spin–orbit
and spin-same-orbit effects to arbitrary order and strength. Fur-
thermore, the method utilizes a recently developed noncollinear
regularized xc potential; so, it is not dependent on the rotation
of the Cartesian coordinate axis system and provides increased
computational stability when compared to older noncollinear
schemes. In order to include the important spin-polarization effects,
the method is based on the Kramers-unrestricted Kohn–Sham
determinant.

We have demonstrated the generally superior convergence,
with regard to the basis set size, of the proposed RMB–GIAO
method compared to the method based on the restricted kineti-
cally balanced basis (RKB) with a common gauge origin (CGO).
Exceptions to this include small systems and systems with a cer-
tain symmetry, i.e., systems for which the choice of gauge origin
only has a minor or no effect on the calculated g-tensors. The use
of double-ζ quality basis sets, including extended forms thereof,
may yield highly unsatisfactory results even when obtained with
the RMB–GIAO method. The RKB–CGO results for small systems
obtained with bases extended by core correlating and diffuse func-
tions converge almost as well, or just as well, as the RMB–GIAO
results. For moderate-sized systems with delocalized spin density,
the RKB–CGO results obtained with bases of triple-ζ quality without
additional core correlating and diffuse functions may deviate from
the RMB–GIAO results up to 15%.

In all the examples considered, the RMB–GIAO results con-
verge monotonically to the basis set limit starting with valence
triple-ζ bases. In general, for the RMB–GIAO calculations of the
g-tensor, core correlating functions are more important than dif-
fuse functions. The smallest basis set that can be expected to provide
sufficiently converged RMB–GIAO results (the relative error below
10%) should be of triple-ζ quality extended by core correlating func-
tions on atoms with a significantly polarized core. Those atoms are
not necessarily limited to heavy-atom centers, they may include
lighter atoms as well.

Using the formulation of the RKB–CGO method via the cur-
rent densities, we have shown that the gauge dependence of the
g-tensor results vanishes in the basis set limit. In particular, we have
proved the validity of the continuity equation within the framework
of the DKS theory as well as its connection to the gauge-independent
g-tensor results by using the divergence theorem. The key point of
the proof is the vanishing integral of the current density in the basis
set limit. In addition, we used the formulation of the RKB–CGO
method via the current density to show how the double point-group
symmetry may be useful in analyzing the gauge dependence of the
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g-tensor results. For example, we demonstrated that the gauge inde-
pendence of the g-tensor of TiF3 is a consequence of the fact that its
SOMO belongs to the E1/2 irreducible representation (irrep) of the
D3h group. Although NAMI is not a symmetric system, its SOMO
belongs (approximately) to the F3/2g irrep of the Oh group, which
results in a weak gauge dependence of the calculated g-tensors.

Finally, we have discussed the somewhat surprising result that,
in molecular-cluster calculations, the gauge error does not increase
on increasing the size of the cluster, if the gauge origin is cho-
sen to be in the center of the cluster. To explain this behavior,
we have used the formulation of the RKB–CGO method based on
current densities. In this formulation, the gauge-dependent term
of an individual molecule within the cluster depends linearly on
the integral of the current density and on the relative position of
the molecule with respect to the center of the cluster. As a result,
one can show that the gauge error of the entire cluster equals the
gauge error of a single molecule, if the intermolecular interactions
are sufficiently small. However, even in the case of nonvanish-
ing intermolecular interactions, the gauge error is still significantly
diminished, and it increases only weakly with increasing size of the
cluster.

SUPPLEMENTARY MATERIAL

See the supplementary material for a discussion of the
RKB–GIAO method; the orientation of the principal axes of the
g-tensor in TT-NAG, Te–N anion, Re3S4 cluster, and NAMI sys-
tems; a comparison of the RKB–CGO and RMB–CGO methods; the
performance of the RMB–GIAO method with various basis sets; and
def2-SVP, def2-TZVP, and def2-QZVPPD fitting bases for hydrogen
and germanium.
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APPENDIX A: THE CONTINUITY EQUATION
WITHIN THE DHF AND DKS THEORY

To show the validity of the continuity equation and the cor-
responding definition of the charge and current densities in the
framework of the DHF and DKS theories, we start from the equation
of motion for the ith occupied molecular orbital φi(r⃗, t),

i(dφi
dt
) = [c(α⃗ ⋅ π⃗) + (β − I4)c2 +V(r⃗, t)]φi, (A1)

with π⃗ = p⃗ + 1
c A⃗ being the mechanical momentum operator. Here

and in the following, we use bold font on MOs to indicate that they
have a four-component form. The level of theory (DHF or DKS) is
specified by the choice of the four-component potential V(r⃗, t) (see
the discussion of the parameter ξ in Sec. III). By multiplying the left
side of Eq. (A1) with φ†

i , we get [here and in Eqs. (A3)–(A5), i is not
a summation index]

iφ†
i (

dφi
dt
) = cφ†

i (α⃗ ⋅ π⃗)φi + φ†
i (β − I4)c2φi + φ†

i [V(r⃗, t)φi], (A2)

and by subtracting its Hermitian adjoint, we obtain the expression

i
d
dt
(φ†

i φi) = cφ†
i (α⃗ ⋅ π⃗ φi) − c(α⃗ ⋅ π⃗ φi)

†φi + φ†
i [(β − I4)c2φi]

− [(β − I4)c2φi]
†
φi + φ†

i [V(r⃗, t)φi] − [V(r⃗ , t)φi]
†φi.
(A3)

In contrast to the operators α⃗ ⋅ A⃗ and (β − I4)c2, the operator that
contains the momentum operator, α⃗ ⋅ p⃗, is not Hermitian in the
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matrix sense [because for the dagger operation used above, it holds
that (p⃗ φi)

† = −p⃗ φ†
i ].

Therefore, while the third and fourth terms on the RHS of
Eq. (A3) vanish, the first two terms yield

cφ†
i (α⃗ ⋅ p⃗ φi) − c(α⃗ ⋅ p⃗ φi)

†φi = −ic[φ†
i α⃗ ⋅ (∇⃗φi) + (∇⃗φi)

† ⋅ α⃗ φi]

= −ic∇⃗ ⋅ (φ†
i α⃗φi). (A4)

The last two terms in Eq. (A3) vanish for any local Hermitian poten-
tials, such as the xc potential or Coulomb contribution to the Fock
operator. On the other hand, in the case of a nonlocal HF exchange
potential, one gets the following expression:

φ†
i (r⃗1)[V ex(r⃗1)φi(r⃗1)] − [V ex(r⃗1)φi(r⃗1)]

†φi(r⃗1)

=∑
j

φ†
i (r⃗1)

⎡⎢⎢⎢⎢⎣
∫

φ†
j (r⃗2)φi(r⃗2)
∣r⃗1 − r⃗2∣

d3 r⃗2

⎤⎥⎥⎥⎥⎦
φj(r⃗1)

−∑
j

φ†
j (r⃗1)

⎡⎢⎢⎢⎢⎣
∫

φ†
i (r⃗2)φj(r⃗2)
∣r⃗1 − r⃗2∣

d3 r⃗2

⎤⎥⎥⎥⎥⎦
φi(r⃗1), (A5)

which vanishes only if one performs an additional summation over
the occupied index i. By collecting Eqs. (A3)–(A5), we get the
equation

d
dt
(−φ†

i φi) = −∇⃗ ⋅ [−cφ†
i α⃗φi], (A6)

where in the presence of an HF exchange potential, the summa-
tion over index i is required, while in its absence, this summation
is optional, i.e., the equation holds both for the sum and for the
individual occupied MOs.

In the DHF or DKS theory, the charge density ρ can be
expressed as the sum of molecular orbital contributions,

ρ =∑
i

ρi = −∑
i

φ†
i φi. (A7)

Here, we have used the physical definition of the charge density of
electrons, i.e., that it integrates to the charge of the system, which is
equal to the number of electrons multiplied by their charge (−1). We
note in passing that the definition of ρ0 in Eq. (34) gives the number
of electrons when integrated and, thus, lacks the minus sign. The
continuity equation describes a process of transporting some phys-
ical quantity. It sets up a mathematical relation between the charge
and the current density of the said quantity. If we assume that the
continuity equation is satisfied in the framework of the DHF and
DKS theory, and we take the charge density as defined by Eq. (A7),
then the four-component current density necessarily has the form

j⃗ =∑
i

j⃗i = −∑
i

φ†
i cα⃗φi. (A8)

Then, according to Eq. (A6) and the corresponding discussion,
within the framework of pure DFT, ξ = 0, the continuity equation
holds for the charge and current density of the individual MOs,

dρi

dt
= −∇⃗ ⋅ j⃗i. (A9)

If, on the other hand, the HF exchange potential is present in the
Fock operator, the continuity equation is satisfied for the total charge
and current densities only,

dρ
dt
= −∇⃗ ⋅ j⃗. (A10)

APPENDIX B: INTEGRAL OF THE CURRENT
DENSITY IN R3

In this section, we will prove that the integral of the current
density vanishes, Eq. (42), when the continuity equation, Eq. (A10),
is satisfied,

dρ
dt
= −∇⃗ ⋅ j⃗ ⇒ ∭ j⃗ d3 r⃗ = 0. (B1)

For a time-independent charge density, ρ ≠ ρ(t), the continuity
equation gives, for any closed volume V, the following relation:

∭
V

dρ
dt

dV = −∭
V

∇⃗ ⋅ j⃗ dV = 0. (B2)

Application of the divergence theorem (also known as Gauss’s
theorem) to this expression then leads to the following relation:

∭
V

∇⃗ ⋅ j⃗ dV =∯
S

j⃗ ⋅ dS⃗ = 0, (B3)

where V is a three-dimensional closed volume and S = ∂V is its
boundary. Let us choose the volume V to be the upper half of a
sphere with radius R, V = {x2 + y2 + z2 ≤ R, z ≥ 0}. The boundary of
V consists of the hemisphere S1 = {x2 + y2 + z2 = R, z > 0} and the
disk in the xy plane S2 = {x2 + y2 ≤ R, z = 0}. The surface integral
in Eq. (B3) then becomes

∯
S

j⃗ ⋅ dS⃗ =∯
S1

j⃗ ⋅ dS⃗1 +∯
S2

j⃗ ⋅ dS⃗2 = 0. (B4)

When the current density j⃗(r⃗) decreases asymptotically faster than
∣r⃗∣−2 (which is satisfied in the usual quantum chemical calculations
of an isolated molecule), then in the limit R→∞, the first integral
on the right-hand side of Eq. (B4) vanishes. Because the integral over
the surface S = S1 + S2 vanishes as well, Eq. (B4) simplifies to

lim
R→∞∯

S2

j⃗ ⋅ dS⃗2 = 0. (B5)

In the limit R→∞, the integral over the disk with radius R turns into
an integral over the xy plane. Keeping in mind that the orientation
of the surface normal points outward of a closed volume, one gets
the expression

lim
R→∞∯

S2

j⃗ ⋅ dS⃗2 = −∬ jz dx dy = 0. (B6)

Finally, we can rewrite the three-dimensional integral of the current
density as follows:

∭ jz d3 r⃗ = ∫ (∬ jz dy dx)dz = 0. (B7)
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A similar result can be obtained for each component of the current
density j⃗ by choosing a different orientation of the closed integration
area V. Q.E.D.

On the basis of Eq. (A9) and the corresponding discussion, for
the pure DFT functionals (ξ = 0), one may prove the theorem in
Eq. (B1) for individual molecular orbitals,

∀i :
dρi

dt
= −∇⃗ ⋅ j⃗i ⇒ ∭ j⃗i d3 r⃗ = 0. (B8)
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