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The effect of a finite size model for both the nuclear charge and magnetic moment distributions on
calculated EPR hyperfine structure have been studied using a relativistic four-component method
based on density functional theory. This approach employs a restricted kinetically balanced basis
(mDKS-RKB) and includes spin-polarization using noncollinear spin-density exchange-correlation
functionals in the unrestricted fashion. Benchmark calculations have been carried out for a num-
ber of small molecules containing Zn, Cd, Ag, and Hg. The present results are compared with
those obtained at the Douglas–Kroll–Hess second order (DKH-2) method. The dependence of the
results on the quality of the orbital and auxiliary basis sets has been studied. It was found that
some basis sets contain irregularities that deteriorate the results. Especial care has to be taken
also on the construction of the auxiliary basis for fitting the total electron and spin-densities.
© 2011 American Institute of Physics. [doi:10.1063/1.3526263]

I. INTRODUCTION

The EPR spectroscopy provides us with ultimate infor-
mation on the electronic structure at the position and the
vicinity of a nucleus possessing a magnetic moment. It also
gives a challenge for theoreticians to calculate accurately
EPR parameters (hyperfine structure, g-tensor and zero-field-
splitting) and also provides an opportunity to test the preci-
sion of quantum-chemical methods. In particular, the EPR hy-
perfine structure constant, which in the nonrelativistic case is
usually defined via the Fermi-contact operator at the position
of the nucleus, is known as especially difficult to calculate.
Besides, the electronic structure in the vicinity of a nucleus
is primarily affected by relativistic effects. Even for relatively
light elements relativistic effects should be taken into account
for accurate evaluation of the hyperfine operator.1 Going to
heavier elements one has to abolish even such basic models
as the nuclear point charge and point magnetic dipole because
these models become too crude: they have to be replaced
with more physical finite size (FN) models for both nuclear
charge and nuclear magnetic moment distributions. Although
FN model for charge distribution in the form of a Gaussian
function is widely used in relativistic calculations (see, e.g.,
a thorough review by Andrae,2 and references therein), so far
only a few studies dealing with a FN model for the magnetic
moment has been reported for atoms (Refs. 3–9, and cited
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therein) and for calculation of NMR shielding10 and spin–spin
coupling.11

Recently, we have studied the effect of a finite size
nuclear model for both charge and moment distributions
on the calculated hyperfine coupling constants (HFCC).12

The results, obtained at the second order scalar Douglas–
Kroll–Hess (DKH-2) DFT level showed remarkable effect for
199Hg HFCC. That time two points remained open. First, the
biggest drawback of that approach was the limited accuracy
of DFT. The second question is connected with quality of
the DKH-2 transformation itself. In that study it was difficult
to separate the effects of these two sources of errors on the
calculated results. Nowadays, when the DKH second order
transformation is quickly becoming outdated (especially in
calculations of molecular properties such as NMR and EPR
parameters), it would be interesting to see to which extend
DKH-2 is able to reproduce the results of a fully relativistic
four-component method. To answer these questions an effi-
cient implementation of a FN model in calculations of HFCC
at a post-Hartree-Fock four-component level of theory is re-
quired. Although this work (which is currently in progress) is
much more involved than implementation at the DFT level,
in the present paper we are answering only the second ques-
tion by presenting results for hyperfine structure obtained
with the Dirac–Kohn–Sham (DKS) method. This method is
based on the use of restricted-kinetically balanced (RKB) ba-
sis and includes spin-polarization using noncollinear spin–
density exchange-correlation functionals in the unrestricted
fashion.
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The paper is organized as follows. The basic equations
for unrestricted noncollinear relativistic four-component cal-
culations of HFCC within the mDKS-RKB method are given
in Sec. II. Computational details are described in Sec. III. Sec-
tion IV is devoted to benchmark calculations and discussions
of the results on a series of two- and three-atomic molecules.
Finally, conclusions are summarized.

II. THEORY

Throughout the paper we will use the Hartree system of
atomic units. Summation over repeated indices is assumed.
The following index notation is employed: i, j denote occu-
pied positive energy orbitals and λ, τ are basis function in-
dices. Cartesian directions are indexed by u, v. Superscripts L
and S denote the large and the small components, respectively.
We will use subscripts 2 × 2 and 4 × 4 to stress that the corre-
sponding matrices are two- and four-component, respectively.
For the nuclear charge and nuclear magnetic moments we
will consider point models and Gaussian-type distributions,13

i.e., the same models as were employed in our previous
work.12

We start with the following definition of the hyperfine
coupling (HFC) tensor of the Mth nucleus (for a detailed dis-
cussion of the definitions and related issues see Refs. 14, 15,
and works cited therein)

AM
uv = 1

〈S̃v〉
d E

(
Jv , �I M

)
d I M

u

∣∣∣∣∣ �I M =0

, (1)

where 〈S̃v〉 is an effective spin used to characterize the system
under study, �J is the total magnetization vector, �I M is the spin
of the Mth nucleus and E is the Dirac–Kohn–Sham electronic
energy.

In order to evaluate the derivative of the energy, we can
apply the Hellmann–Feynman theorem. Thus the HFC tensor
can be written in the following form

AM
uv = 1

〈S̃v〉
〈
ϕ

(Jv ,0)
i

∣∣D(1)M
u
∣∣ϕ(Jv ,0)

i

〉
, (2)

where ϕ
(Jv ,0)
i is the ith unperturbed MO, the superscript (Jv , 0)

denotes the dependence on the total magnetization vector ori-
ented along v-axis and independence on the spin of the nu-
cleus, operator D(1)M

u is defined as follows

D(1)M
u ≡ ∂(�α · �A)

∂ I M
u

∣∣∣∣∣ �I M =0

, (3)

where �α is the vector composed of the Dirac matrices (�σ are
the Pauli matrices)

�α =
(

02×2 �σ
�σ 02×2

)
. (4)

The vector potential �A can be written either with the point
nuclear magnetic moment

�A �I M ,PN = γ M
�I M × �rM

r3
M

, (5)

or with a finite magnetic moment of nucleus

�A �I M ,FN = −γ M �I M × �∇
∫ ∫ ∫

Gη(| �R − �RM |)
|�r − �R| d3 �R, (6)

where γ M is the gyromagnetic ratio for nucleus M, �rM

= �r − �RM , �r is the electron coordinate, �R is the nuclear
magnetic moment distribution coordinate, �RM is the position
of the Mth nucleus and Gη refers to the normalized s-type
Gaussian function

Gη(| �R − �RM |) =
(

η

π

)3/2

e−η( �R− �RM )2
. (7)

The unperturbed MOs ϕ
(Jv ,0)
i [see Eq. (2)] can be ob-

tained from the three SCF procedures solving the equations(
Dkin + V (Jv ,0)

4×4

)
ϕ

(Jv ,0)
i = εiϕ

(Jv ,0)
i , (8a)

Dkin ≡ (β − 14×4) c2 + c�α · �p,
(8b)

V (Jv ,0)
4×4 ≡

(
V (Jv ,0)

2×2 02×2

02×2 V (Jv ,0)
2×2

)
.

Here εi is the one-electron energy, c is the speed of light, �p is
the momentum operator, matrix β has the following form

β =
(

12×2 02×2

02×2 −12×2

)
(9)

and 12×2, 14×4 are identity matrices.
The potential V (Jv ,0)

2×2 is defined as V (Jv ,0)
2×2 ≡ Vnuc

+ V (Jv ,0)
ee + V (Jv ,0)

xc , where the Coulomb electron–electron re-
pulsion potential V (Jv ,0)

ee and the exchange-correlation poten-
tial V (Jv ,0)

xc have their usual forms

V (Jv ,0)
ee ≡

∫
ρ

(Jv ,0)
0 (�r ′)
|�r − �r ′| dV ′ 12×2, (10)

V (Jv ,0)
xc ≡ δExc

[
ρ

(Jv ,0)
k

]
δρ

(Jv ,0)
k

σk, k = 0, x, y, z, (11)

where Exc is the Kohn–Sham exchange-correlation energy
and ρ

(Jv ,0)
k represents the relativistic electron density (k = 0)

and three spin densities (k = x, y, z)

ρ
(Jv ,0)
k ≡ ϕ

(Jv ,0)†
i �kϕ

(Jv ,0)
i ,

(12)

�0 ≡ 14×4, �� ≡
(

�σ 02×2

02×2 �σ

)
.

Here we would like to note that (1) we do not employ any
relativistic current-dependent exchange-correlation function-
als (i.e., we use nonrelativistic LDA or GGA functionals; the
extension to the hybrid functionals is straightforward) and (2)
the exchange-correlation part V (Jv ,0)

xc of the potential V (Jv ,0)
2×2 is

implemented in the “noncollinear” fashion.14, 16

The nuclear Coulomb potential Vnuc can be also used with
the point charge

Vnuc,PN ≡ −
∑

M

Z M

rM
12×2, (13)
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or with the finite charge distribution

Vnuc,FN = −
∑

M

Z M

∫ ∫ ∫
Gθ (| �R − �RM |)

|�r − �R| d3 �R 12×2, (14)

and Z M is the charge of the Mth nucleus.17

To get the final equations for the HFC tensor in the matrix
form, one has to express MOs [in Eq. (2)] as a linear combina-
tion of basis functions. The choice of the basis set in the four-
component calculations is crucial: a not properly balanced
basis set for the small component might lead to a variationally
unstable SCF procedure. The use of the restricted kinetically
balanced basis, in the absence of a magnetic field, reduces
the variational instability to the order c−4 (see Refs. 18 and
19 for more details) and therefore stabilizes the whole SCF
procedure

ϕ
L(Jv ,0)
i = C L(Jv ,0)

λi χλ, (15a)

ϕ
S(Jv ,0)
i = C S(Jv ,0)

λi

1

2c
�σ · �pχλ. (15b)

Here χλ is an λth basis function, C L(Jv ,0)
λi and C S(Jv ,0)

λi represent
the expansion coefficients for the large and the small compo-
nent, respectively, for a system with magnetization vector �J
oriented along v-axis.

Substituting this expansion in Eq. (2), we obtain the final
expression for the HFC tensor of the Mth nucleus

AM
uv = 1

〈S̃v〉
(

CL(Jv ,0)†
(i) CS(Jv ,0)†

(i)

) (
0 �

P†
I M
u

�P
I M
u

0

)(
CL(Jv ,0)

(i)

CS(Jv ,0)
(i)

)
.

(16)

For the sake of simplicity, below we will employ the matrix
notation C (Jv ,0)

λi = C(Jv ,0)
(i) . We keep the subscript (i), to stress

that C(Jv ,0)
(i) are coefficients for the ith MO. The matrix �P

I M
u

can be written either for the point nuclear magnetic moment
distribution [Eq. (5)]

(
�P

I M
u ,PN

)
λτ

≡ γ M

〈
χλ

∣∣∣∣∣�σ · �p
( �rM × �σ

r3
M

)
u

∣∣∣∣∣χτ

〉
, (17)

or for the finite nuclear magnetic moment distribution
[Eq. (6)](
�P

I M
u ,FN

)
λτ

≡ γ M

〈
χλ

∣∣∣∣∣�σ · �p
(

�σ × �∇
∫ ∫ ∫

Gη(| �R − �RM |)
|�r − �R| d3 �R

)
u

∣∣∣∣∣χτ

〉
.

(18)

The evaluation of all final expressions for HFC tensor is
straightforward and fast as one may expect from the calcu-
lation of a first-order property (they take only a fraction of the
SCF computation time).

III. COMPUTATIONAL DETAILS

All calculations have been carried out with the ReSpect
code20 (including the property module MAG-ReSpect). Fully

relativistic calculations were done with a new four-component
module of ReSpect developed in Bratislava.21–23 Molecular
structures have been taken the same as in Ref. 12. The cal-
culations have been done at the DFT level with the gradient-
corrected Becke exchange24 and Perdew correlation25 func-
tionals (BP86). In all four-component calculations grid for
numerical calculations with 256 radial and 194 angular points
have been employed. For calculations at the scalar DKH-2
level, we have taken grid with 128 radial points. The number
of angular points in the radial shell depended on the distance
of this shell from the integration center (with a denser grid
in the valence area) that resulted in about 12,000 grid points
per atom. In the DKH-2 calculations, the picture-change ef-
fects have been taken into account, i.e., the Douglas–Kroll
transformation up to the second order has been applied to the
hyperfine-structure operator (see Ref. 12, for more details).
Here we would like to note that no picture-change problems
appear at the four-component level.

The calculated hyperfine coupling constants are known to
be very sensitive to the choice of the basis set. Since the four-
component calculation of HFCCs is still terra incognita we
have tried several available relativistic basis sets. In particular,
we employed basis sets by Hirao. We decided to test them in
our four-component calculations because they are convenient
for comparison of the results obtained with PN and FN mod-
els: there exists one set of basis functions optimized for use
with a point nucleus model26 (Hirao-PN basis), and one for
a finite-size nucleus model27 (Hirao-FN). We also tried basis
sets of Faegri28 and double-, triple-, and quadruple-zeta bases
of Dyall (Dyall-DZ, Dyall-TZ, and Dyall-QZ) (optimized for
FN model).29 All bases were employed in a fully uncontracted
fashion. On heavy atoms (Zn, Ag, Cd, and Hg) Hirao and Fae-
gri basis sets were augmented by a set of s-, p-, d-, and f- dif-
fuse functions (obtained by dividing the smallest exponents
of a given basis set by a factor of 2.35 for s and p, and by 3.0
for d and f). For light nuclei (H, C, N, and F), we used Hirao’s
basis sets with polarization functions taken from the IGLO-III
basis set.30

In our first benchmark calculations we suffered some dif-
ficulties doing calculations of HFCC with those original basis
sets. By analyzing the problem we found out that it is related
to the fact that many bases (such as Faegri, Hirao, IGLO30

etc. basis sets) contain one or several “holes” (usually at the
border between valence and diffuse functions), i.e., the ra-
tio between two subsequent exponents can differ significantly
from the average ratio. To fix the problem, we modified the
original basis sets. The modifications concerned only s- and
p-functions and were based on the analysis of the ratio be-
tween neighboring exponents. For each element we kept first
(tight) s- and p- exponents intact until the change in the ra-
tio stopped to be monotonic. The remaining exponents were
obtained in an even-tempered manner in such a way that the
smallest exponent was kept the same as in the original basis
and the ratio was kept as close as possible to the original one.
If we denote ns and np—the number of the first intact s- and p-
exponents, correspondingly; qs and qp—the factors employed
for the even-tempered part of the basis, respectively, then the
employed parameters (ns, qs; np, qp) can be summarized as
follows:
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Hg: Faegri – (10, 1.949; 9, 1.955), Dyall-DZ – (11, 1.939;
12, 1.980);
Dyall-TZ – (14, 1.769; 14, 1.923), Dyall-QZ – (17,
1.590; 18, 1.752);
Hirao-FN – (12, 1.944; 14, 1.824), Hirao-PN – (16,
1.984; 15, 1.853);

Ag: Faegri – (10, 2.058; 7, 1.980), Dyall-DZ – (11, 2.068;
6, 2.194);
Dyall-TZ – (15, 1.881; 13, 1.908), Dyall-QZ – (19,
1.584; 16, 1.752);
Hirao-FN – (14, 2.016; 11, 1.938), Hirao-PN – (13,
2.098; 10, 1.960);

Cd: Hirao-FN – (11, 2.079; 10, 1.957), Hirao-PN – (13,
2.067; 10, 1.980);

Zn: Hirao-FN – (14, 2.166; 12, 1.767), Hirao-PN – (11,
2.171; 12, 1.759);

Cs: Hirao-FN – (13, 2.038; 13, 1.930), Hirao-PN – (16,
1.974; 13, 1.909); 31

Fr: Hirao-FN – (7, 1.704; 12, 1.931), Hirao-PN – (7, 1.781;
14, 1.902);
Dyall-TZ – (20, 1.692; 16, 1.834);

C: Hirao-FN – (8, 2.225; 5, 2.446), Hirao-PN – (8, 2.232;
5, 2.450);

N: Hirao-FN – (8, 2.226; 5, 2.459), Hirao-PN – (8, 2.221;
5, 2.664);

F: Hirao-FN – (8, 2.259; 4, 2.578), Hirao-PN – (8, 2.283;
4, 2.621).

No modification of s-exponents for hydrogen in Hirao-FN and
Hirao-PN bases was required. For readers’ convenience, the
exponents of the modified basis sets are given in Supplemen-
tary Material.31 Except for a few benchmark calculations with
the original basis sets, in all calculations we have used the
modified basis sets. To test the convergence with respect to
the tight s-functions in the basis set, in some calculations the
modified basis sets were augmented by one tight s-exponent.
This exponent was chosen to keep the smooth monotonic
character of the ratio between the adjacent exponents. This
extension is marked as (+1S).

For fitting of the total electron density and the compo-
nents of spin density, in most calculations we have used un-
contracted auxiliary basis sets with s- and p- exponents twice
larger than the corresponding exponents in the modified or-
bital bases. The auxiliary d- (f-) functions are constructed in
the even-tempered manner covering the space of orbital p-
(d-) functions multiplied by 2. The number of d- and f- ex-
ponents is equal to the number of p- and d- functions in the
orbital basis, correspondingly. These auxiliary basis sets will
be referred to as A-mod. For illustrating purposes, in a few
calculations we have also used other auxiliary basis sets (de-
noted as A-orig) built using the exponents in the original or-
bital basis sets. In A-orig bases, s-exponents are twice larger
than the s-exponents in the original orbital basis; p- and d-
exponents evenly cover the space of orbital p- functions mul-
tiplied by two whereas f-functions cover the corresponding
space for orbital d-functions (i.e., d-functions multiplied by
two). The number of p-, d-, and f- exponents is kept the same
as the number of p-, p-, and d-functions, correspondingly, in
the original orbital basis. Additional tests indicated that, for

systems considered in the paper, addition of auxiliary func-
tions with higher angular momentum than in the orbital basis
set was not necessary.

Throughout this work, an A+B notation is used, where
A stands for the Hamiltonian used in the calculation of the
wavefunction (with point-nucleus model (PN) or finite-size
nucleus model (FN)), and B stands for the HFC operator em-
ployed (again either PN or FN). The HFC computations were
done for the following isotopes: 67Zn, 107Ag, 111Cd, 133Cs,
199Hg, and 223Fr.32

IV. BENCHMARK CALCULATIONS AND DISCUSSION

We will start our discussion with study of the dependence
of the calculated HFCC on the quality of the orbital and aux-
iliary basis sets. It is well known that HFCC are extremely
sensitive to the quality of the basis sets (especially at the
core area). However, our first benchmark calculations indi-
cated an additional trouble connected with how the basis sets
were constructed (see below). The problem is that many ba-
sis sets (such as Faegri,28 Hirao,26, 27 IGLO,30 etc. basis sets)
contain one or several holes (usually at the border between va-
lence and diffuse functions), i.e., the ratio between two sub-
sequent exponents can differ significantly from the average
ratio. Since these basis sets are commonly used, it is instruc-
tive to check how such irregularities can affect the calculated
HFCC. To do so, we will compare the results obtained with
the original and modified basis sets. The detailed description
of the modification procedure is given in the previous sec-
tion. The important point is that the modified basis set spans
the same range of exponents as the original one and it has ap-
proximately the same ratio between the consequent exponents
as in the original basis set. When we had used the original ba-
sis and only patched the “holes” we got similar improvement
of the results, but we decided to use the modified basis sets
for consistency—this is especially important in cases when
it is difficult to decide whether the “hole” is big enough to
add one exponent or not. However, even bigger effect on the
calculated HFCC has the choice of the auxiliary basis set for
fitting the total and spin- densities. We have used two types of
auxiliary basis sets, A-orig and A-mod, described in Sec. III.
The most important difference between them is in the s- ex-
ponents: in both cases the s-exponents are obtained from the
s-exponents in an orbital basis set by multiplication by two,
but for building A-orig we have taken the original orbital ba-
sis (O-orig) whereas for A-mod the modified orbital basis set
(O-mod) have been used. We found that the use of A-orig ba-
sis sets with holes inherited from the original orbital set could
affect the calculations in many different ways ranging from a
bad SCF convergence (or no convergence at all) to poor re-
sults. In Table I, we collected results for HFCC calculated
with FN+FN model (which is the most stable with respect to
the basis set quality) for XH (X = Zn, Cd, Hg) series and Fr
atom. From the presented data it is clear that the use of the
auxiliary basis set A-orig can lead to poor results unless it is
constructed on the basis of a very good orbital basis (i.e., or-
bital basis without big “holes”—as in the case of Dyall-TZ
basis). The use of the original basis sets together with the
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TABLE I. Dependence of the calculated HFCC for heavy nuclei on the
modification of the orbital and auxiliary basis sets. mDKS-RKB, FN+FN
model.

O-orig O-orig O-mod
Molecule Basis A-orig A-mod A-mod

ZnH Hirao-FN 1301 563 564
CdH Hirao-FN −2647 −3504 −3431
HgH Hirao-FN 12253 6143 6244

Fr Hirao-FN 6978 6478 7593
Fr Dyall-TZ 7600 7602 7605

modified auxiliary basis provided quite reasonable results for
ZnH, CdH, and HgH molecules but failed for Fr. For Fr atom,
the HFCC calculated with the original Hirao-FN basis are sig-
nificantly underestimated whereas the results obtained with
the modified Hirao-FN basis are in good mutual agreement
with those with Dyall-TZ basis (either original or modified).
We also found that the use of original basis sets might lead
to a worsening SCF convergence in comparison with the cal-
culations performed with modified basis sets. Since the list of
the systems studied in this work is rather short, we can ex-
pect that there exist more examples where the use of an orig-
inal basis set with holes would lead to irregular results. The
same phenomenon was also observed in DKH-2 calculations
of HFCC without fitting the electron density. Clearly, the ba-
sis set problem in the relativistic HFCC calculations requires
a more thorough investigation which is beyond the scope of
the present work. We plan to perform such a study in future.
However even now we can state that the use of holes-free ba-
sis sets as a reliable option.

The use of the FN model should reduce the overall high
sensitivity of calculated HFCC on the quality of the employed
basis set. However a priori it is unclear to which extent such
expectations are correct. Thus before discussing the FN ef-
fect on a wider set of nuclei and systems, we analyze fur-
ther a basis set dependence of 199Hg HFCC, calculated with
mDKS-RKB method for a series of small molecules (HgH,
HgF, HgCN, and HgAg). Our results are summarized in
Table II. The Faegri, Hirao-FN, and Dyall’s DZ, TZ, and QZ
basis sets (all modified) have been used together with FN+FN
model. While these basis sets are of rather different quality,
only slight deviation of the results was found. The agreement
becomes even more remarkable if we would leave out the
data obtained with Faegri basis set which is the smallest one
among used here bases. We can conclude that it is safe to use

TABLE II. Dependence of the calculated 199Hg HFCC on the basis set.
mDKS-RKB, finite-size nucleus model for the charge and magnetic moment
distributions (FN+FN) has been employed.

Basis HgH HgF HgCN HgAg

Faegri 6214 16989 13862 3366
Hirao-FN 6244 16895 13967 3285
Dyall-DZ 6241 16846 13988 3306
Dyall-TZ 6234 16833 13945 3325
Dyall-QZ 6226 16839 13935 3313

TABLE III. The effect of the finite size nucleus model on the hyperfine
coupling constant for Cs and Fr.a Ratio = HFCCFN+FN/HFCCPN+PN.

Atom Model O-mod/A-mod

Cs PN+PN 2273
FN+FN 2235

ratio 0.983

Fr PN+PN 9165
FN+FN 8096

ratio 0.883

amDKS-RKB, Hirao-PN basis set.

the modified Hirao and Dyall’s basis sets employing FN+FN
model in HFCC calculations.

While the accurate calculation of HFCC is the ultimate
goal and it is extremely important in practical applications, in
our paper devoted to method development we will discuss the
FN/PN ratio that is crucial for estimation of the finite nucleus
effect. In Table III, we present the calculated HFCC values
for Cs and Fr—they have been selected because some earlier
results for these atoms are available.6, 33, 34 The calculations
were done with Hirao-PN basis sets. Let us look first at the
results for Cs atom. The obtained previously FN/PN ratios
(i.e., HFCC with FN+FN divided by HFCC with PN+PN in
percents) for Cs atom were 0.97 (Ref. 6) and 0.976 (Ref. 34).
Taking into account that these were basis-free calculations (at
the Dirac–Hartree–Fock level for the atomic core with cor-
relation effects treated at the second order perturbation the-
ory as in Ref. 6 or using the nonrelativistic configuration in-
teraction method for lithium-like ions where relativistic cor-
rections were calculated up to first order in 1/Z employing a
perturbation theory),34 the agreement with our Dirac–Kohn–
Sham FN/PN value (0.983) is rather good. It is even more
interesting to compare the effect of the FN model found in
the present work with available data for a heavier atom, Fr.
Again, our result for the FN/PN ratio (0.883) is in good agree-
ment with available data [0.846 using fully relativistic Dirac–
Hartree–Fock method,33 0.84 (Ref. 6)].

Now we will compare the finite size model effect on
HFCCs calculated with mDKS-RKB and scalar DKH-2 meth-
ods on 199Hg for some small molecules.35 We have chosen
these systems because they were studied previously at DKH-
2 level and it was shown that finite-size effects for 199Hg
HFCC play an important role.12 The results of our calcula-
tions (with both DKH-2 and mDKS-RKB methods) are pre-
sented in Table IV in comparison with experimental data. The
finite size nucleus effects are given in parentheses (defined as
(HFCCPN+PN − HFCCFN+FN)/HFCCPN+PN in percents). The
basis sets of Hirao (optimized for PN model) were used in
the calculations to allow the direct comparison of PN and FN
models.

We see that DKH-2 results obtained with PN model are
about 20–24% larger in the absolute values than those of
mDKS-RKB method. Interestingly, the impact of the finite
size model for mDKS-RKB method (numbers in the paren-
theses) for the considered here molecules is slightly more
uniform in the considered series (10.89–14.67%) than at the
DKH-2 level (11.62–17.48%). Consequently, mDKS-RKB
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TABLE IV. Finite size nucleus effect on 199Hg HFCC calculated at the one- (scalar DKH-2) and four-component
(mDKS-RKB) levels. Hirao-PN basis set. Values in parentheses are the finite size nucleus effect defined as
(HFCCPN+PN – HFCCFN+FN)/HFCCPN+PN in percents.

Method Model HgH HgF HgCN HgAg

DKH-2 PN+PN 8586 23463 19285 4459
DKH-2 FN+FN 7471 (12.99) 19362 (17.48) 16183 (16.09) 3941 (11.62)

mDKS-RKB PN+PN 6921 18927 15599 3690
mDKS-RKB FN+FN 5906 (14.67) 16810 (11.19) 13875 (11.05) 3288 (10.89)
Exp.a 7002 22127 15850 2723

aExperimental data from Ref. 37.

and DKH-2 methods give rather different HFCC values with
FN model. There can be several possible reasons for this dis-
crepancy. First of all, the DKH-2 description of the deep core
area has a limited accuracy. Certainly, one has to go beyond
the second level of DKH method to get the accuracy of cal-
culated HFCCs close to that in mDKS-RKB. A heavy use
of the resolution of identity in DKH-2 is another potential
source of loosing the accuracy. From the other side, DKH-2
calculations were performed without fitting the Coulomb and
exchange-correlation potentials whereas in the present imple-
mentation of mDKS-RMB the fit of the electron density is
unavoidable. Although we have paid great attention to the
choice of auxiliary basis sets the final answer about the influ-
ence of the density fit on the calculated HFCCs should wait
till the implementation of the four-index integrals for eval-
uation of electron–electron Coulomb repulsion without fit-
ting in the mDKS-RMB framework. This work is currently in
progress.

Unfortunately, comparison with experimental data could
not allow one to judge undeniably about the accuracy of a
method: since it is well known, that the HFCC possesses a
pronounced sensitivity to the exchange-correlation function-
als employed, the overall better agreement of DKH-2 (in com-
parison with mDKS-RKB) results with experimental data are
likely due to fortunate error cancellations. And, of course, for
a careful comparison with experimental results the environ-
mental and ro-vibrational effects have to be considered in the
calculations.

The mDKS-RKB results for HFCC calculated for a num-
ber of metals in two- and three-atomic molecules are pre-
sented in Table V in comparison with available experimen-
tal data. As it was expected, the FN effect is minimal for light
metals such as Zn and increases sturdily with the atomic num-
ber. The consequence of extra tight exponent added to the
basis set has been very minor in all FN+FN, FN+PN, and
PN+FN calculations. In the PN+PN calculations, this effect
has been also small except for the calculations of the 107Ag
HFCC. Therefore, we included these data in Table V. The
calculated HFCC on Ag show a rather strong dependence on
the adding a tight exponent. It is interesting to note that for
the 107Ag HFCC we found that the effect of the FN model
for the magnetic moment of the nuclei (PN+FN data) has
an “inverse” character in comparison with other data: the use
of the FN model here increases the absolute value of HFCC
while normally the FN model decreases it. However this phe-
nomenon is basis set dependent: adding one tight exponent

to the Hirao-PN basis leads to the normal effect of the FN
model (i.e., PN+FN HFCC is smaller in the absolute value
than the PN+PN result). This observation can be rational-
ized by analyzing different contributions to the HFCC. We
separated them into four terms: Fermi-contact (FC), param-
agnetic spin-orbit (PSO) spin-dipolar (SD) and a new rel-
ativistic term that vanishes in the nonrelativistic limit (the
dominating part of this term can be called as counter-Fermi-
contact term or CFC because its sign is opposite to the sign
of the FC term and CFC has a similar dependence on the
basis set as FC does). The resulting HFCC on heavy nuclei
in molecules consists basically of two contributions: standard
Fermi-contact and this purely relativistic CFC term with the
opposite sign. Thus, the resulting HFCC is practically a dif-
ference between two big numbers (see the values of the FC
and CFC terms in Supplementary Material31). The change of
the basis set in core area and the nucleus model affect these
two terms in a slightly different way and it is difficult to pre-
dict a priori whether their sum will be increasing or decreas-
ing. We are planning to pay special attention to this issue in
future work. All in all, we can conclude, that the Hirao-PN
basis set for calculations of 107Ag HFCC using the PN model
(for both charge and magnetic moment distributions) is not
sufficient.

Despite the discussed above limited accuracy of DFT
method in calculations of hyperfine structure, the overall
agreement with experimental data is noticeable. Only the re-
sults for HgF molecule are clearly deviate from the general
picture. It would be interesting to see to which extend this
discrepancy is related to poor simulation of real experimen-
tal conditions by consideration of a single molecule as it has
been done in this study.

V. CONCLUSIONS

This work is a continuation of our previous study12 per-
formed at the Douglas–Kroll–Hess level of theory, on the
use of a finite size nucleus model (in particular for the
nuclear magnetic moment distribution) in relativistic cal-
culations of EPR hyperfine structure. The relativistic four-
component density functional approach based on the use of
restricted kinetically balanced basis (mDKS-RKB) for calcu-
lations of EPR hyperfine structure was extended to include
the finite size Gaussian-type model for the magnetic mo-
ment distribution. The method was applied for calculations
of EPR hyperfine constants for a series of small molecules
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TABLE V. HFCC on heavy nuclei (marked bold) in a series of small compounds, calculated with mDKS-RKB
method and different basis sets. Data for PN and FN models for charge and magnetic moment distributions are
presented.

Molecule Basis PN+PN PN+FN FN+PN FN+FN Exp.a

ZnH Hirao-PN 562 559 567 565
Hirao-FN 564 564

–
CdH Hirao-PN −3477 −3430 −3437 −3418

Hirao-FN −3449 −3431
+/− 4097

HgH Hirao-PN 6921 6335 6034 5906
Hirao-FN 6386 6244

7002
ZnF Hirao-PN 1249 1243 1255 1250

Hirao-FN 1254 1252
–

CdF Hirao-PN −7792 −7688 −7697 −7655
Hirao-FN −7727 −7687

–
HgF Hirao-PN 18927 17376 17173 16810

Hirao-FN 17265 16895
22127

ZnCN Hirao-PN 1075 1070 1078 1074
Hirao-FN 1075 1073

–
CdCN Hirao-PN −6822 −6731 −6739 −6702

Hirao-FN −6756 −6720
−7669

HgCN Hirao-PN 15599 14313 14176 13875
Hirao-FN 14275 13967

15850
ZnAg Hirao-PN 355 353 359 358

Hirao-FN 359 359
–

CdAg Hirao-PN −2244 −2214 −2215 −2203
Hirao-FN −2225 −2213

−2053
HgAg Hirao-PN 3690 3382 3360 3288

Hirao-FN 3359 3285
2723

ZnAg Hirao-PN −1170 −1213 −1298 −1292
Hirao-PN+1S −1318 −1300 −1301 −1294
Hirao-FN −1337 −1324

−1324
CdAg Hirao-PN −1141 −1188 −1280 −1274

Hirao-PN+1S −1300 −1281 −1283 −1276
Hirao-FN −1291 −1284

−1327
HgAg Hirao-PN −1331 −1390 −1502 −1495

Hirao-PN+1S −1526 −1505 −1506 −1498
Hirao-FN −1541 −1527
Dyall-QZ −1506

−1562

aExperimental data from Ref. 37.

containing heavy metals up to Hg. The effects of the or-
bital and auxiliary basis sets were studied. We found that the
use of an orbital and especially an auxiliary basis that con-
tains “holes” (i.e., large irregularity in consequent exponents
of the Gaussian functions) might lead to significant loss of
accuracy.

Our results for the finite size nucleus effect on HFCC
are in a good quantitative agreement with older atomic cal-
culations. Since the computational efficiency of our four-
component mDKS-RKB code allows one to study systems of
real chemical interest, as it was demonstrated recently in cal-
culation of electronic g-tensors36 the ability of the presented

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



044111-8 Malkin et al. J. Chem. Phys. 134, 044111 (2011)

method lies far beyond of being a pure theoretical tool for ob-
taining accurate benchmark data. Rather it provides a strong
alternative to the existing approximate two-component meth-
ods with transformed Hamiltonians (such as the Douglas–
Kroll–Hess method, zero-order regular approximation or re-
lated approaches) in calculations of EPR parameters.
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